spark feature】的更多相关文章

spark推测执行:当成功的Task数超过总Task数的75%(可通过参数spark.speculation.quantile设置)时,再统计所有成功的Tasks的运行时间,得到一个中位数,用这个中位数乘以1.5(可通过参数spark.speculation.multiplier控制)得到运行时间门限,如果在运行的Tasks的运行时间超过这个门限,则对它启用推测.简单来说就是对那些拖慢整体进度的Tasks启用推测,以加速整个Stage的运行. 设置 spark.speculation=true即…
写这个系列是因为最近公司在搞技术分享,学习Spark,我的任务是讲PySpark的应用,因为我主要用Python,结合Spark,就讲PySpark了.然而我在学习的过程中发现,PySpark很鸡肋(至少现在我觉得我不会拿PySpark做开发).为什么呢?原因如下: 1.PySpark支持的算法太少了.我们看一下PySpark支持的算法:(参考官方文档) 前面两个pyspark.sql和pyspark.streaming是对sql和streaming的支持.主要是读取数据,和streaming处…
本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Streaming可以很好的解决上述类似的问题. 了解Spar…
  kmeans聚类相信大家都已经很熟悉了.在Python里我们用kmeans通常调用Sklearn包(当然自己写也很简单).那么在Spark里能不能也直接使用sklean包呢?目前来说直接使用有点困难,不过我看到spark-packages里已经有了,但还没有发布.不过没关系,PySpark里有ml包,除了ml包,还可以使用MLlib,这个在后期会写,也很方便. 首先来看一下Spark自带的例子: from pyspark.mllib.linalg import Vectors from py…
val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first println(first) val files = rdd.map { case (fileName, content) => fileName.replace("file:", "") } println(files.first)println(files.coun…
1.Example 使用Spark MLlib中决策树分类器API,训练出一个决策树模型,使用Python开发. """ Decision Tree Classification Example. """ from __future__ import print_function from pyspark import SparkContext from pyspark.mllib.tree import DecisionTree, Decisi…
Application ID is application_1481285758114_422243, trackingURL: http://***:4040Exception in thread "main" org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://mycluster-tj/user/engine_arch/data/mllib/sample_libsvm_d…
spark-2.0.2 机器学习库(MLlib)指南 MLlib是Spark的机器学习(ML)库.旨在简化机器学习的工程实践工作,并方便扩展到更大规模.MLlib由一些通用的学习算法和工具组成,包括分类.回归.聚类.协同过滤.降维等,同时还包括底层的优化原语和高层的管道API. MLllib目前分为两个代码包: spark.mllib 包含基于RDD的原始算法API. spark.ml 则提供了基于DataFrames 高层次的API,可以用来构建机器学习管道. 我们推荐您使用spark.ml,…
1)java(App.java) package com.ejiajie.bi.hello; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.SparkConf; /** * Hello world! * */ public class App { public static void main( String[…
一.partition的划分问题 如何划分partition对block数据的收集有很大影响.如果需要根据block来加速task的执行,partition应该满足什么条件? 参考思路1:range partition 1.出处: IBM DB2 BLU:Google PowerDrill:Shark on HDFS 2.规则: range partition遵循三个原则:1.针对每一列进行细粒度的范围细分,防止数据倾斜和工作量倾斜:2.每一个partition分配的列是不同的:3.需要针对数据…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…
年9月9日发布了1.5版本,该版本由230+开发人员和80+机构参与,修复了1400多个补丁,该版本可以通过 http://spark.apache.org/downloads.html进行下载.Spark1.5中最主要的修改内容是为了提升Spark性能.可用性和操作稳定性,特别在该版本中引入了Project Tungsten(钨丝项目),该项目通过对几个底层框架构建的优化进一步Spark性能.另外在该版本中添加了Streaming组件.机器学习算法和新的SparkR接口等.具体内容如下: 性能…
前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用中,我们已经写好了一个Spark的应用. 本文的目标是写一个基于akka的scala工程,在一个spark standalone的集群环境中运行. akka是什么? akka的作用 akka的名字是action kernel的回文.根据官方定义:akk…
1.  MLlib Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python. 2.   数据类型 本地向量,标注点,本地矩阵,分布式矩阵 3. 本地向量 Local Vector 稠密向量 dense        一个double数组,例如 (1.0, 0.0, 0.0, 0.0, 3.0) 稀疏向量 sparse       两个并行的数组(indices和values),例如…
将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果.其中标签数据是指已知结果的特征数据. 分类和回归的区别:预测结果的变量类型 分类预测出来的变量是离散的(比如对邮件的分类,垃圾邮件和非垃圾邮件),对于二元分类的标签是0和1,对于多元分类标签范围是0~C-1,C表示类别数目: 回归预测出来的变量是…
本文目的 当前spark(1.3版)随机森林实现,没有包括OOB错误评估和变量权重计算.而这两个功能在实际工作中比较常用.OOB错误评估可以代替交叉检验,评估模型整体结果,避免交叉检验带来的计算开销.现在的数据集,变量动辄成百上千,变量权重有助于变量过滤,去掉无用变量,提高计算效率,同时也可以帮助理解业务.所以,本人在原始代码基础上,扩展了这两个功能,下面记录实现过程,作为备忘录(参考代码). 整体思路 Random Forest实现中,大多数内部对象是私有(private[tree])的,所以…
前言 最近阅读了spark mllib(版本:spark 1.3)中Random Forest的实现,发现在分布式的数据结构上实现迭代算法时,有些地方与单机环境不一样.单机上一些直观的操作(递归),在分布式数据上,必须进行优化,否则I/O(网络,磁盘)会消耗大量时间.本文整理spark随机森林实现中的相关技巧,方便后面回顾.   随机森林算法概要 随机森林算法的详细实现和细节,可以参考论文Breiman 2001.这里简单说说大体思路,方便理解代码. 随机森林是一个组装(ensemble mod…
前言 在Spark集群 + Akka + Kafka + Scala 开发(1) : 配置开发环境中,我们已经部署好了一个Spark的开发环境. 在Spark集群 + Akka + Kafka + Scala 开发(2) : 开发一个Spark应用中,我们已经写好了一个Spark的应用. 本文的目标是写一个基于kafka的scala工程,在一个spark standalone的集群环境中运行. 项目结构和文件说明 说明 这个工程包含了两个应用. 一个Consumer应用:CusomerApp -…
地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html   Spark PipeLine 是基于DataFrames的高层的API,可以方便用户构建和调试机器学习流水线 可以使得多个机器学习算法顺序执行,达到高效的数据处理的目的   DataFrame是来自Spark SQL的ML DataSet 可以存储一系列的数据类型,text,特征向量,Label和预测结果   Transformer:将DataFrame转化为另外一个DataFra…
理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shishanyuan/p/4747778.html 采用了三个案例,分别对应聚类.回归和协同过滤的算法. 我觉得很好,需要每一个都在实际系统中试一下. 更多api介绍可以参考 http://spark.apache.org/docs/2.0.1/ml-guide.html 1.1 聚类实例 1.1.1 …
Introduction Spark provides a unified runtime for big data. HDFS, which is Hadoop's filesystem, is the most used storage platform for Spark as it provides const-effefctive storage for unstructured and semi-structured data on commodity hardware. Spark…
3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是依据现有深度学习教程<UFLDL教程>中的算法.在SparkMLlib中的实现.详细Spark MLlib Deep Learning(深度学习)文件夹结构: 第一章Neural Net(NN) 1.源代码 2.源代码解析 3.实例 第…
安装环境如下: 操作系统:CentOs 6.6 Hadoop 版本:CDH-5.3.0 Spark 版本:1.2 集群5个节点 node01~05 node01~03 为worker. node04.node05为master spark HA 必须要zookeepr来做协同服务,做master主备切换,zookeeper的安装和配置再次不做赘述. yum源的配置请看: 1.安装 查看spark的相关包有哪些: [root@node05 hadoop-yarn]# yum list |grep…
原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3816289.html 本文以spark 1.0.0版本MLlib算法为准进行分析 一.代码结构 逻辑回归代码主要包含三个部分 1.classfication:逻辑回归分类器 2.optimization:优化方法,包含了随机梯度.LBFGS两种算法 3.evaluation:算法效果评估计算…
在YARN上运行Spark 在Spark0.6.0版本开始支持YARN模式,随后的版本在逐渐地完善. 在YARN上启动Spark 确保HADOOP_CONF_DIR或YARN_CONF_DIR属性的值已经指向了Hadoop集群的配置文件.Spark通常使用这些配置信息来向HDFS写入数据和连接到YARN资源管理器.这个目录下所有的文件将会被分发到YARN集群中,所以所有应用使用的容器都使用同样的配置.如果Java的系统属性或YARN没有管理的环境变量等配置,它们应该在Spark 的应用配置项中配…
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims to automating the task of ML pipeline construction. The optimizer solves a search problem over feature extractors and ML algorithms included inMLI and…
Spark 1.6.x的新特性Spark-1.6是Spark-2.0之前的最后一个版本.主要是三个大方面的改进:性能提升,新的 Dataset API 和数据科学功能的扩展.这是社区开发非常重要的一个里程碑.1. 性能提升根据 Apache Spark 官方 2015 年 Spark Survey,有 91% 的用户想要提升 Spark 的性能.Parquet 性能自动化内存管理流状态管理速度提升 10X 2. Dataset APISpark 团队引入了 DataFrames,新型Datase…
Data Types - MLlib(数据类型)       MLlib支持存储在单机上的局部向量和局部矩阵,也可以支持通过一个或多个RDD(可伸缩数据集)表示的分布式矩阵.局部向量和局部矩阵是用作公共接口的简单数据模型,实际上底层的线性代数运算由Breeze (机器学习和数值运算的Scala库)和 jblas (Java线性代数运算库)提供.在有监督机器学习中,MLlib使用标记点(labeled point)来表示单个训练语料.   局部向量[Local vector]: 局部向量存储在单机…
spark集群中的节点可以只处理自身独立数据库里的数据,然后汇总吗? 修改 我将spark搭建在两台机器上,其中一台既是master又是slave,另一台是slave,两台机器上均装有独立的mongodb数据库.我是否可以让它们只统计自身数据库的内容,然后将结果汇总到一台服务器上的数据库里?目前我的代码如下,但是最终只统计了master里的数据,另一个worker没有统计上. val config = new Configuration() //以下代码表示只统计本机数据库上的数据,猜测问题可能…
Spark Sreaming与MLlib机器学习 本来这篇是准备5.15更的,但是上周一直在忙签证和工作的事,没时间就推迟了,现在终于有时间来写写Learning Spark最后一部分内容了. 第10-11 章主要讲的是Spark Streaming 和MLlib方面的内容.我们知道Spark在离线处理数据上的性能很好,那么它在实时数据上的表现怎么样呢?在实际生产中,我们经常需要即使处理收到的数据,比如实时机器学习模型的应用,自动异常的检测,实时追踪页面访问统计的应用等.Spark Stream…