siamese跟踪论文思考】的更多相关文章

转载自:https://zhuanlan.zhihu.com/p/34222060 通过作者在专栏里面放的几张响应图我们可以看到:SiamFC并不能区分不同的物体,图片上所有具有语义信息的物体都会得到较大的响应: 但是它在数据集上的表现确实是不错的,那么为什么呢,是因为加了窗函数,将周边的物体抑制掉了,猜测在跟踪的评价数据集中,大部分也是目标物体周围的其他物体较少,因此才能有不错的表现: 接下来作者进行了分析,既然网络所学习到的特征不够好,那么只需要学习到好的特诊好就行了,一个很容易想到的方法就…
iker原创.转载请标明出处:http://blog.csdn.net/ikerpeng/article/details/39050619 Realtime and Robust Hand Tracking from Depth中的Cost Function 学习 首先,我们应该知道,输入的数据是什么:3D 点云数据. 3D点云给我的感觉应该是这种 输出的是:拟合好的手模型(48球体模型). 而这里的的3D 点云数据用p表示,每个球体用Sx 表示. Ci 第i个球体的中心:D表示深度图( 区分还…
单目标(表观模型): 1. Seunghoon Hong, BohyungHan. Orderless Trackingthrough Model-Averaged Density Estimation. (Offline tracking?和一般的object tracking还是不一样的. CVPR12上也有篇OrderlessTracking, 不过是online tracking) 2. Zhibin Hong, Xue Mei, DachengTao. Tracking via Rob…
Fully-Convolutional Siamese Networks for Object Tracking 本文作者提出一个全卷积Siamese跟踪网络,该网络有两个分支,一个是上一帧的目标,一个是本帧的候选框,最终得到一个响应图.响应图的最大值就是目标所在的位置. 本文算法的核心是相似性学习,通过交叉相关计算两张图片的相似性. 本文的跟踪框架如下图所示: z表示真实目标,x表示候选图片.候选图片的尺寸是真是目标的四倍. 本网络的结构如下图所示;…
CVPR 2020几篇论文内容点评:目标检测跟踪,人脸表情识别,姿态估计,实例分割等 CVPR 2020中选论文放榜后,最新开源项目合集也来了. 本届CPVR共接收6656篇论文,中选1470篇,"中标率"只有22%,堪称十年来最难的一届. 目标检测 论文题目: Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection 本文首先指出了基于锚…
​  前言  本文介绍了一个端到端的用于视觉跟踪的transformer模型,它能够捕获视频序列中空间和时间信息的全局特征依赖关系.在五个具有挑战性的短期和长期基准上实现了SOTA性能,具有实时性,比Siam R-CNN快6倍. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Learning Spatio-Temporal Transformer for Visual Tracking 代码:https:/…
摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(visual object tracking)的过程.目标跟踪(特指单目标跟踪)是指:给出目标在…
CVPR2020:点云三维目标跟踪的点对盒网络(P2B) P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds 代码:https://github.com/HaozheQi/P2B 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Qi_P2B_Point-to-Box_Network_for_3D_Object_Tracking_in_Point_…
商汤科技智能视频团队首次开源其目标跟踪研究平台 PySOT.PySOT 包含了商汤科技 SiamRPN 系列算法,以及刚被 CVPR2019 收录为 Oral 的 SiamRPN++.此篇文章将解读目标跟踪最强算法 SiamRPN 系列. 背景 由于存在遮挡.光照变化.尺度变化等一些列问题,单目标跟踪的实际落地应用一直都存在较大的挑战.过去两年中,商汤智能视频团队在孪生网络上做了一系列工作,包括将检测引入跟踪后实现第一个高性能孪生网络跟踪算法的 SiamRPN(CVPR 18),更好地利用训练数…
基于内容感知深度特征压缩的高速视觉跟踪 论文下载:http://cn.arxiv.org/abs/1803.10537对于视频这种高维度数据,作者训练了多个自编码器AE来进行数据压缩,至于怎么选择具体的网络,作者又训练了一个基于目标选择具体AE的网络,再根据压缩后的特征图,进行协相关过滤操作追踪目标. 本文有趣的地方在于:1. 两种加噪声的操作,既增加了鲁棒性,又相当于数据增强.2. 为了自编码器的平稳训练和防过拟合提出了multi-stage distance loss.3. 最后移除相应低的…