问题 E: 魔法交流活动 题目描述 魔法学校近日开展了主题为“天气晴朗”的魔法交流活动.N名魔法师按阵法站好,之后选取N - 1条魔法链将所有魔法师的魔力连接起来,形成一个魔法阵.魔法链是做法成功与否的关键.每一条魔法链都有一个魔力值V,魔法最终的效果取决于阵中所有魔法链的魔力值的和.由于逆天改命的魔法过于暴力,所以我们要求阵中的魔法链的魔力值最大值尽可能的小,与此同时,魔力值之和要尽可能的大.现在给定魔法师人数N,魔法链数目M.求此魔法阵的最大效果. 输入 两个正整数N,M.(1 <= N <…
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路.这时,自然会考虑,如何在最节省经费的前提下建立这个公路网络. 每2个城市之间都可以设置一条公路,相应地都要付出一定的经济代价.n个城市之间,最多可以设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少? 克鲁斯卡尔(kruskal)算法的大致思路: 把每条边的权重…
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树. 生成树是连通图的极小连通子图.这里所谓极小是指:若在树中任意增加一条边,则将出现一条回路:若去掉一条边,将会使之变成非连通图. 最小生成树(Minimum Spanning Tree,MST):或者称为最小代价树Minimum-cost Spanning Tr…
概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集合{E}中的边都被尝试了过后所形成的树为最小生成树. 定义 假设G=(V, {E})是连通网(即带权连通图),则令最小生成树的初始状态为只有N个顶点而无边的非连通图T=(V, {}),图T中每个顶点自成一个连通分量.在图G的边集{E}中选择权值最小的边e,若e依附的顶点落在T中不同的连通分量上,则将…
克鲁斯卡尔算法打印最小生成树: 构造出所有边的集合 edges,从小到大,依次选出筛选边打印,遇到闭环(形成回路)时跳过. JS代码: //定义邻接矩阵 let Arr2 = [ [0, 10, 65535, 65535, 65535, 11, 65535, 65535, 65535], [10, 0, 18, 65535, 65535, 65535, 16, 65535, 12], [65535, 18, 0, 22, 65535, 65535, 65535, 65535, 8], [6553…
目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 7 个站点(A, B, C, D, E, F, G) ,现在 需要修路把 7 个站点连通,各个站点的距离用边线表示(权) ,比如 A – B 距离 12公里 问:如何修路保证 各个站点都能连通,并且 总的修建公路总里程最短? 如上图所示:要求和前面的普利姆算法中的修路问题是一样的要求,只是换了一个…
算法代码 C#代码 using System; using System.Linq; namespace Kruskal { class Program { static void Main(string[] args) { Edge[] edges = new Edge[] { new Edge(){Begin = 4, End = 7, Weight = 7 }, new Edge(){Begin = 2, End = 8, Weight = 8 }, new Edge(){Begin =…
学习最小生成树算法之前我们先来了解下下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的所有顶点的树,则该子图称为G的生成树.生成树是连通图的极小连通子图.这里所谓极小是指:若在树中任意增加一条边,则将出现一条回路:若去掉一条边,将会使之变成非连通图. 最小生成树(Minimum Spanning Tree,MST):或者称为最小代价树Minimum-cost Spanning Tree…
题目简述:假如有一个无向连通图,有n个顶点,有许多(带有权值即长度)边,让你用在其中选n-1条边把这n个顶点连起来,不漏掉任何一个点,然后这n-1条边的权值总和最小,就是最小生成树了,注意,不可绕成圈. 思路简介:对比普里姆和克鲁斯卡尔算法,克鲁斯卡尔算法主要针对边来展开,边数少时效率比较高,所以对于稀疏图有较大的优势:而普里姆算法对于稠密图,即边数非常多的情况下更好一些.其思路为将边按照权值从小到大排列,先取出最小的边,,再取出第二小的边,直到连接所有顶点,其中要注意不能将同一条边连接在同一颗…
最小生成树 在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树.  例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树. 普里姆算法介绍 普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所有顶点的集合:现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边. 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点…