luogu P1593 因子和】的更多相关文章

不要吐槽博主总做这些数论氵题 首先我们看到这种因数问题,果断质因数分解 所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\) 可得\(a^b=p_1^{k_1*b}*p_2^{k_2*b}...*p_m^{k_m*b}\) 考虑因数和,假设数\(a\)只有一个质因子\(p_1\),则因数和为\(\sum_{i=0}^{k_1}{p_1}^i\) 如果有第二个质因子\(p_2\)则因数和为\(\sum_{i=0}^{k_1}({p_1}^i*\sum_{j=0}^…
https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然后给指数乘上$b$. 然后我们就需要计算$(1+p+p^2+....p^k)$因为k可能特别大,所以直接计算是不可能了. 看完公式后,我们当然可以利用等比公式计算了,然而还要求逆元,这题不用那么麻烦啦. 费马小定理可以解决这个问题:公式第14条 $$a^x \equiv a^{\mu(x)}mod…
题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因子和对9901的余数. 输入输出样例 输入样例#1: 2 3 输出样例#1: 15看似不可做,其实非常简单任意正整数都有且只有一种方式写出其素因子的乘积表达式.A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)其中 pi 均为素数那么A^B=(p1^(k1*B))*(p2^…
P1593 因子和新算法:#define ni 逆元先质因数分解,(1+p1^1+p1^2...p1^x)*(1+p2^1+p2^2...p2^x)然后套等比数列公式就可以了. #include<iostream> #include<cstdio> #include<queue> #include<algorithm> #include<cmath> #include<ctime> #include<set> #defin…
因子和 题目描述 输入两个正整数a和b,求\(a^b\)的因子和.结果太大,只要输出它对9901的余数. 解法 基本算数定理,每一个数都可以被分解成一系列的素数的乘积,然后你可以分解出因数了. 如何求出因数和呢?我们发现是等比数列,之后我们上等比数列求和公式就好了 \[ S_n = \frac{a_1 \times (1-q^n)}{1-q}=\frac{p_{i}^{c_i+1} -1}{p_i -1} \] 其中我们可以用快速幂和逆元求出来了 #include <iostream> #in…
题目链接 首先介绍两个定理. 整数唯一分解定理:任意正整数都有且只有一种方式写出素数因子的乘积表达式. \(A=(p1k1 p2k2 ...... pnkn \) 求这些因子的代码如下 ;i*i<=a;++i){ if(!(a%i)){ prime[++num]=i; while(!(a%i)){ a/=i; sum[num]++; } } } ){ prime[++num]=a; sum[num]=; } 唯一分解定理 约数和公式:对于已经分解的整数A,有A的所有因子和为 \( S= (1+p…
类似的因为模数比较小的坑还有卢卡斯定理那道,也是有时候逆元会不存在,因为整除了.使用一些其他方法避免通过逆元. https://www.luogu.org/fe/problem/P1593 有坑.一定要好好理解费马小定理等逆元存在的条件.费马小定理求逆元的条件是p是质数且a不为0,扩展欧几里得算法的条件是a,m互质. 那么上面用费马小定理求等比数列的分母的逆元的时候,就没有判断a不为0.而他们也不互质所以也不能使用扩展欧几里得算法. 其实当a为0的时候这个退化为等差数列. #include<bi…
luogu 因为限制关系只和2和3有关,如果把数中2的因子和3的因子都除掉,那剩下的数不同的数是不会相互影响,所以每次考虑剩下的数一样的一类数,答案为每类数答案的乘积 如果选了一个数,那么2的因子多1的和3的因子多1的数都不能选.假设这个数为\(2^a3^bc\),那就把这个数放在\(i\)行\(j\)列上,现在问题变成这一堆数有多少子集满足没有两个上下或左右相邻元素,那么状压一行的放数状态,一行一行扫过去dp即可 #include<bits/stdc++.h> #define LL long…
[luogu]P3938 斐波那契 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子.我们假定, 在整个过程中兔子不会出现任何意外. 小 C 把兔子按出生顺序,把兔子们从 1 开始标号,并且小 C 的兔子都是 1 号兔子和 1 号兔子的后代.如果某两对兔子是同时出生的,那么小 C 会将父母标号更小的一对优先标 号. 如果我们把这种关系用图画下来,前六个月…
[luogu]P3939 数颜色 题目描述 小 C 的兔子不是雪白的,而是五彩缤纷的.每只兔子都有一种颜色,不同的兔子可能有 相同的颜色.小 C 把她标号从 1 到 n 的 n 只兔子排成长长的一排,来给他们喂胡萝卜吃. 排列完成后,第 i 只兔子的颜色是 ai​. 俗话说得好,“萝卜青菜,各有所爱”.小 C 发现,不同颜色的兔子可能有对胡萝卜的 不同偏好.比如,银色的兔子最喜欢吃金色的胡萝卜,金色的兔子更喜欢吃胡萝卜叶子,而 绿色的兔子却喜欢吃酸一点的胡萝卜……为了满足兔子们的要求,小 C 十…
虽然有点久远  还是放一下吧. 传送门:https://www.luogu.org/contest/show?tid=754 第一题  沉迷游戏,伤感情 #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; ],last,now,sum[],s; deque<lon…
题目链接:http://www.luogu.org/problem/show?pid=1268#sub -------- 这道题费了我不少心思= =其实思路和标称毫无差别,但是由于不习惯ACM风格的题目,没有打答案之间的换行,wa了好几次 解决所有"构造"问题都要按照如下的步骤: 寻找特例.特征 建立模型 一般化模型 寻找特例 (1) 我们假设结点数为1,显然答案为0,因为这棵树的边集为空. (2) 当结点数为2时,答案就是d[1][2],即(1,2)的距离. (3) 当结点数为3时呢…
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/C   题目在文末 题意:1~n (n:1~1012)中,因子和为偶数的有几个.题解: 因子和 Sum=(p1^0+p1^1….p1^e1)*(p2^0+p2^1…p2^e2)……(pn^0+…pn^en); = (p1^0+p1^1….p1^e1),(p2^0+p2^1…p2^e2),……(pn^0+…pn^en)中只要有一个是偶数,因子和sum就为偶数.所…
题目链接:http://lightoj.com/volume_showproblem.php?problem=1098 题意:给你一个数n (0 ≤ n ≤ 2 * 109),求n以内所有数的因子和,保证结果在LL范围内 我们可以枚举2-sqrt(n)的每个数出现的次数,然后再找到对应因子大于sqrt(n)的数出现数的和; 例如2的倍数4 6 8 10,对应的因子就是2 3 4 5; 时间复杂度为sqrt(n)*T; #include <stdio.h> #include <string…
小M的因子和 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 小M在上课时有些得意忘形,老师想出道题目难住他.小M听说是求因子和,还是非常得意,但是看完题目是求A的B次方的因子和,有些手足无措了,你能解决这个问题吗?   输入 有多组测试样例每行两个数 A ,B ,(1≤A,B≤10^9)  输出 输出A的B次方的因子和,并对9901取余. 样例输入 2 3 样例输出 15 上传者 Sumdiv Time Limit: 1000MS   Memory Limit…
题目传送门:https://www.luogu.org/problem/show?pid=2170 题目描述 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一部分没有,同学们就会抗议.所以老师想请你帮他求出他该选多少学霸,才能既不让同学们抗议,又与原来的M尽可能接近 输入输出格式 输入格式: 第一行,三个正整数N,M,K. 第2...K行,每行2个数,表示一对实力相当的人的编号(编号为1-N) 输出格式: 一行,表示既不让同学们抗议,又与原来的M尽可能接…
题目传送门:https://www.luogu.org/problem/show?pid=2647 题目描述 现在你面前有n个物品,编号分别为1,2,3,--,n.你可以在这当中任意选择任意多个物品.其中第i个物品有两个属性Wi和Ri,当你选择了第i个物品后,你就可以获得Wi的收益:但是,你选择该物品以后选择的所有物品的收益都会减少Ri.现在请你求出,该选择哪些物品,并且该以什么样的顺序选取这些物品,才能使得自己获得的收益最大. 注意,收益的减少是会叠加的.比如,你选择了第i个物品,那么你就会获…
A.情书 题目:http://www.luogu.org/problem/show?pid=2264 赛中:sb题,直接暴力匹配就行了,注意一下读入和最后一句话的分句 赛后:卧槽 怎么只有40 B.小朋友的球 题目:http://www.luogu.org/problem/show?pid=1655 赛中:sb题,第二类斯特林数,加个高精度就行了,我还写了个暴力对拍 赛后:卧槽 怎么只有80 未知错误怎么回事儿啊 C.命运的彼方 题目:http://www.luogu.org/problem/s…
luogu  P2580 于是他错误的点名开始了 https://www.luogu.org/problem/show?pid=2580 题目背景 XS中学化学竞赛组教练是一个酷爱炉石的人. 他会一边搓炉石一边点名以至于有一天他连续点到了某个同学两次,然后正好被路过的校长发现了然后就是一顿欧拉欧拉欧拉(详情请见已结束比赛CON900). 题目描述 这之后校长任命你为特派探员,每天记录他的点名.校长会提供化学竞赛学生的人数和名单,而你需要告诉校长他有没有点错名.(为什么不直接不让他玩炉石.) 输入…
CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenate (1 ..N)是将所有正整数 1, 2, -, N 顺序连接起来得到的数.例如,N = 13, Concatenate (1…
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. Input 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. Output 输出包含一行一个整数,即an除以m的余数. Sample Input…
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 请你求出 f(n) mod 1000000007 的值. Input 第 1 行:一个整数 n Output 第 1 行: f(n) mod 1000000007 的值 Sample Input 5 Sample Output 5 Http Luogu:htt…
CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算组合数的一般公式: \[C^m_n=\frac{n!}{m!(n-m)!}\] 其中n! = 1 × 2 × · · · × n 小葱想知道如果给定n,m和k,对于所有…
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 Output 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 Sample Input 2 1 1 1 1 1 Sample Output 1 1 1 1 Http Luogu:https://www.luogu.org/prob…
Luogu 1060 开心的金明 / NOIP 2006 (动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行".今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元.于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要.他还从因特网上查到了每件物品的价格(都是整数元).他希…
Luogu 1090 合并果子(贪心,优先队列,STL运用) Description 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了.多多在合并果子时总共消耗的体力等于每次合并所耗体力之和. 因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力.假定每个果子重量都为1,并且已知果子…
Luogu 1006 传纸条 / NOIP 2008 传纸条(动态规划) Description 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们可以通过传纸条来进行交流.纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标(1,1),小轩坐在矩阵的右下角,坐标(m,n).从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向…
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每天每个该细胞可以分裂出 x − 1 个新的细胞. 小 X 决定第 i 天向培养皿中加入 i 个细胞(在实验开始前培养皿中无细胞). 现在他想知道第 n 天培养皿中总共会有多少个细胞. 由于细胞总数可能很多,你只要告诉他总数对 w 取模的值即可. Input 第一行三个正整数 n, x,w Outpu…
Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行".今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子: 主件 附件 电脑 打印机,扫描仪 书柜 图书…
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为了方便起见,我们可以认为宇宙是一张有N 个顶点和M 条边的带权无向图,顶点表示各个星系,两个星系之间有边就表示两个星系之间可以直航,而边权则是航行的危险程度. sideman 现在想把危险程度降到最小,具体地来说,就是对于若干个询问(A, B),sideman 想知道从顶点A 航行到顶点B 所经过的…