ML(1)——机器学习简述】的更多相关文章

今天在中国七城联动,全球134场的AI BootCamp胜利落幕,广州由卢建晖老师组织,我参与分享了一个主题<ML.NET 机器学习指南和Azure Kinect .NET SDK概要>,活动虽然只有短短的2天时间的宣传,报名70人,到场40多人. 下面我和你分享一下我对ML.NET 机器学习的一些内容. 作为一个.NET开发者的你,可能很难立即进入机器学习.主要原因之一就是我们无法启动Visual Studio 使用我们所精通的.NET技术尝试这个新事物,这个领域被认为更适合该工作的编程语言…
简述 机器学习是人工智能的一种实现方式:深度学习是一种实现机器学习的技术,或者说是一种特殊的机器学习方法,可以说广义上的机器学习也包括了深度学习,三者的关系如下图所示: 从判别垃圾邮件到无人驾驶技术,机器学习在众多领域都有着广泛的应用,机器学习成就了今天的人工智能. 机器学习的本质 在以往的工程项目中,我们认为计算机程序只能严格执行我们让它做的事情——输入数据,输出计算结果.为了得出正确的结果,需要在程序中写大量的循环和判断,但是对于某些问题,这种方式将无法处理,比如如何判断一张照片中有没有大树…
一. 准备工作 IDE是 VS2019.先下载好"resnet_v2_50_299.meta"这个文件,放入"C:\Users\jk\AppData\Local\Temp\MLNET\"这个文件夹,目录不存在自己新建下."jk"是WINDOWS登录名,注意换成你自己的. 下载地址:https://download.csdn.net/download/runliuv/15724931 新建一个"z机器学习样本1"目录,再建立&q…
CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computational Learning Theory 计算学习理论中最重要的理论模型:PAC(Probably Approximately Correct) - 概率近似正确模型(Valiant - 图灵奖,1984)   机器学习的形态:数据 + 算法 未来 技术上:一定是能有效利用GPU等计算设备的方法(未必是深…
微软在Build 2018大会上推出的一款面向.NET开发人员的开源,跨平台机器学习框架ML.NET. ML.NET将允许.NET开发人员开发他们自己的模型,并将自定义ML集成到他们的应用程序中,而无需事先掌握开发或调整机器学习模型的专业知识.在采用通用机器学习语言(如R和Python)开发的模型,并将它们集成到用C#等语言编写的企业应用程序中需要付出相当大的努力.ML.NET填平了机器学习专家和软件开发者之间的差距,从而使得机器学习的平民化,即使没有机器学习背景的人们能够建立和运行模型.通过为…
介绍 Azure DevOps,以前称为Visual Studio Team Services(VSTS),可帮助个人和组织更快地规划,协作和发布产品.其中一项值得注意的服务是Azure Pipelines,它可以帮助开发人员构建持续集成(CI)和持续交付(CD)管道,从而自动化和标准化软件开发过程的构建,测试和部署阶段.此外,Azure Pipelines还提供本机容器支持,可与任何语言,平台和云配合使用.像软件开发这样的机器学习也是一个包括构建,测试和部署阶段的过程,这使其成为自动化和标准化…
微软在Build 2018大会上推出的一款面向.NET开发人员的开源,跨平台机器学习框架ML.NET. ML.NET将允许.NET开发人员开发他们自己的模型,并将自定义ML集成到他们的应用程序中,而无需事先掌握开发或调整机器学习模型的专业知识.在采用通用机器学习语言(如R和Python)开发的模型,并将它们集成到用C#等语言编写的企业应用程序中需要付出相当大的努力.ML.NET填平了机器学习专家和软件开发者之间的差距,从而使得机器学习的平民化,即使没有机器学习背景的人们能够建立和运行模型.通过为…
机器学习.深度学习以及人工智能正在快速演进 机器学习.深度学习和人工智能(ML.DL和AI)是彼此相关的概念,他们正在改变不知多少行业,改变其自身管理模式,同时改变做出决策的方式.显然,ML.DL和AI对于各行各业都非常重要,却也十分复杂,同时非常迅速发展着. 人工智能(Artificial Intelligence,AI)AI用来形容涉及高级计算智能的最宽泛的说法.1956年,在达特茅斯人工智能大会上,该技术被描述为:“原则上,学习的每一个方面或任何其他智能特征都可以精确描述,并且一台机器可以…
机器学习 CNCC - 2016 | 机器学习(原文链接) Machine Learning - ML,机器学习起源于人工智能,是AI的一个分支. 机器学习的理论基础:计算学习理论 - Computational Learning Theory 计算学习理论中最重要的理论模型:PAC(Probably Approximately Correct) - 概率近似正确模型(Valiant - 图灵奖,1984)   机器学习的形态:数据 + 算法 关于机器学习的未来 技术上:一定是能有效利用GPU等…
本文来自于腾讯Bugly公众号(weixinBugly),未经作者同意,请勿转载,原文地址:https://mp.weixin.qq.com/s/OWD5UEiVu5JpYArcd2H9ig 作者:liujizhou 导语:在刚刚过去的WWDC上,苹果发布了Core ML这个机器学习框架.现在,开发者可以轻松的使用Core ML把机器学习功能集成到自己的应用里,让应用变得更加智能,给用户更牛逼的体验. 苹果在 iOS 5 里引入了 NSLinguisticTagger 来分析自然语言.iOS 8…