P2221 [HAOI2012]高速公路】的更多相关文章

P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 上面咋算呢 先考虑每条边被算上的次数$ans = \sum_{i=l}^{r}a[i]*(r-i+1)(i-l+1)$ 我们把它拆开再合并瞎搞,按变量$i$的次数分项 蓝后化出来这个式子: $ans = (r - l- r*l+1) *S_{1}+ (l+r)*S_{2}-S_{3}$ $S_{1}…
链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) 为 \(0\). 有 \(m(1\leq m\leq 10^5)\) 次操作: 操作 \(1\):'C' l r v 表示将 \(l\) 和 \(r\) 之间的所有边长度加上 \(v\). 操作 \(2\):'Q' l r 在第 \(l\) 个到第 \(r\) 个点里等概率随机取出两个不同的点 \(a\…
线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> #include<vector> #define INF 0x7f7f7f7f #define MAXN 100005 #define rint register int #define pb push_back #define pii pair<int,int> #define m…
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠容易 ,问题在于如何求上面的 我们珂以把上面的换一个形式(枚举每段路会走几次): \[\sum_{i=l}^ra[i]*(r-i+1)*(i-l+1)\] 化简一下这个式子: \[(r-l+1-r*l)*sum1+(r+l)*sum2-sum3\] 其中\(sum1=\sum_{i=l}^ra[i]…
思路 考虑每一条边的贡献,然后推式子 \[ \begin{align}&\sum_{i}V_i\times(R-i+1)\times(i-L+1)\\=&\sum_{i}V_i\left[(Ri-i^2+i)-(RL-iL+L)+(R-i+1)\right]\\=&\sum_{i}V_i\left[Ri-i^2+i-RL+Li-L+R-i+1\right]\\=&\sum_{i}Vi\left[(Ri+Li)-i^2-RL+(R-L+1)\right]\\=&\su…
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们可以把边也转化成一个序列,用$i$表示$(i,i+1)$这一条边,那么只要把区间的右端点减一即可 .发现下面的$C_{r-l+1}^2$很好计算,考虑怎么计算上面的,转化,我们考虑每条边会被算多少次,那么答案变成$$\sum_{i=l}^r\sum_{j=i}^r{sum(i,j)}=\sum_{i…
题面 很套路的拆式子然后线段树上维护区间和的题.一般都是把式子拆成区间内几个形如\(\sum i*a_i, \sum i^2 * a_i\)的式子相加减的形式. 考虑一次询问[l,r]的答案怎么算: \[ans=\sum_{i=l}^{r}a_i*(i-l+1)*(r-i+1)\] 把括号拆开,就成了: \[(l+r)\sum_{i=l}^{r}a_i*i-\sum_{i=l}^{r}a_i*i^2-(l-1)*(r+1)\sum_{i=l}^{r}a_i\] 线段树上维护区间\(\sum i^…
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][Status] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行…
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 -------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;  …
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 627[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为…