课本源码部分 第7章  图 - 有向图强连通分量的Kosaraju算法 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接☛☛☛ <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接☛☛☛ <数据结构>课本源码合辑        习题集全解析  链接☛☛☛ <数据结构题集>习题解析合辑        本源码引入的文件  链接☛ OLGraph.c       文档中源码及测试数据存放目…
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,…
目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components). Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量. 定义D…
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图.非强联通图有向图的极大强联通子图(对于“极大”的理解,就是在一个局部子图中不能再大.就像是数学中的求一个函数中的极大值和极小值一样,例如求函数f(x)的极大值和极小值,变量x可以有不同的区间,所以在x的不同区间内就会有不同的极大值或极小值.) 称为强联通分量.直接根据定义用双向遍历取交集求强联通分量,时间复杂度为…
转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量.…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M).更好的…
在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连通分量(strongly connected component). 比如说这个有向图中,点\(1,2,4,5,6,7,8\)和相应边组成的子图就是一个强连通分量,另外点\(3,9\)单独构成强连通分量. Tarjan算法是由Robert Tarjan提出的用于寻找有向图的强连通分量的算法.它可以在…
求有向图的强连通分量     Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序.以下图为例: G图 结点第二次被访问即为退出之时,那么我们可以得到结点的退出顺序 (2)倒转每一条边的方向,构造出一个反图G’.然后按照退出顺序的逆序对反图进行第二次DFS遍历.我们按1.4.2.3.5的逆序第二次DFS遍历: G`图   访问过程如下: 每次遍历得到的那些点即属于同一个强连通分量…
有向图中,连通性比较好理解,如果两个顶点V和顶点W是可达的,可以称之为强连通的,即存在路径A→B,同时也存在一条有向路径B→A.从之前的有向环的判定过程中其实我们可以得到一个结论就是两个是强连通的当且仅当它们都在一个普通的有向环中.强连通将所有的顶点分为了不同的集合,每个集合都是由相互均为强连通性的顶点的最大子集组成的,我们将这些集合称之为强连通分量. 基础概念 一般来说技术服务于生活,如果将我们看到网页作为顶点,页面指向另外一个页面的超链接作为边,可以将数量庞大的网页分为不同的大小进行处理,作…
poj 2186 Popular Cows 题意: 有N头牛, 给出M对关系, 如(1,2)代表1欢迎2, 关系是单向的且能够传递, 即1欢迎2不代表2欢迎1, 可是假设2也欢迎3那么1也欢迎3. 求被全部牛都欢迎的牛的数量. 限制: 1 <= N <= 10000 1 <= M <= 50000 思路: Kosaraju算法, 看缩点后拓扑序的终点有多少头牛, 且要推断是不是全部强连通分量都连向它. Kosaraju算法.分拆完连通分量后,也完毕了拓扑序. /*poj 2186…
1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components). Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量. 定义DFN(u)为节点u搜索的次序编号(…
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tarjan算法详解理解集合 ppt图解分析下载 强连通分量 强连通分量(strongly connected component)是图论中的概念.图论中,强连通图指每一个顶点皆可以经由该图上的边抵达其他的每一个点的有向图.意即对于此图上每一个点对(Va,Vb),皆存在路径Va→Vb以及Vb→Va.(若有…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 直接根据定义,用双向遍历取交集的方法求强连通分量,时间复杂度为O(N^2+M).更好的…
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达.{5},{6}也分别是两个强连通分量. 大体来说有3中算法Kosaraju,Trajan,Gabow这三种!后续文章中将相继介…
一.背景介绍 强连通分量是有向图中的一个子图,在该子图中,所有的节点都可以沿着某条路径访问其他节点.强连通性是一种非常重要的等价抽象,因为它满足 自反性:顶点V和它本身是强连通的 对称性:如果顶点V和顶点W是强连通的,那么顶点W和顶点V也是强连通的 传递性:如果V和W是强连通的,W和X是强连通的,那么V和X也是强连通的 强连通性可以用来描述一系列属性,如自然界中物种之间的捕食关系,互相捕食的物种可以看作等价的,在自然界能量传递中处于同一位置. 下图中,子图{1,2,3,4}为一个强连通分量,因为…
阅读前请确保自己知道强连通分量是什么,本文不做赘述. Tarjan算法 一.算法简介 Tarjan算法是一种由Robert Tarjan提出的求有向图强连通分量的时间复杂度为O(n)的算法. 首先我们要知道两个概念:时间戳(DFN),节点能追溯到的最早的栈中节点的时间戳(LOW).顾名思义,DFN就是在搜索中某一节点被遍历到的次序号(dfs_num),LOW就是某一节点在栈中能追溯到的最早的父亲节点的搜索次序号. Tarjan算法是基于深度优先搜索的算法.在搜索过程中把没有Tarjan过的点入栈…
在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected). 如果有向图G的每两个顶点都强连通,则称G是一个强连通图. 非强连通图有向图的极大强连通子图,成为强连通分量(strongly connected components). 下图中,子图{1,2,3,4}为一个强连通分量,因…
// Tarjan算法求有向图强连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> using namespace std; , M = ; // int ver[M], Next[M], head[N], dfn[N], low[N]; int stack[…
参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至少存在一条路径(即a能到b,b也能到a),则称两个顶点强连通:如果该有向图G中任意两顶点都强连通,则称G为强连通图:在一个非强连通图中,若有子图是强连通图,则称该子图为强连通分量. 有向图强连通分量+链式前向星 模板如下: ; ; struct edge { int next,to; }E[MAXN…
hdu1269 题意 判断对于任意两点是否都可以互相到达(判断有向图强连通分量个数是否为 1 ). 分析 Tarjan 算法实现. code #include<bits/stdc++.h> typedef long long ll; using namespace std; const int MAXN = 2e5 + 10; int n, m; struct Edge { int to, next; }e[MAXN]; int cnt, head[MAXN]; void addedge(in…
1.简介tarjan是一种使用深度优先遍历(DFS)来寻找有向图强连通分量的一种算法. 2.知识准备栈.有向图.强连通分量.DFS. 3.快速理解tarjan算法的运行机制提到DFS,能想到的是通过栈来储存沿途的点,可以找到所有的环.环本身就是联通的,所以环对于强连通分量来说环已经很接近最终答案了.要把找环变成找强连通管分量还要考虑:a.在环外是不是有其他环在这个强连通分量内(极大性) (会被认为是2个环) b.一些不能构成环的点无法被考虑到,而他们本身就是强连通分量 (2不被认为是一个强连通分…
Tarjan算法:一种由Robert Tarjan提出的求解有向图强连通分量的线性时间的算法. 定义给出之后,让我们进入算法的学习... [情境引入] [HAOI2006受欢迎的牛] 题目描述: 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你 算出有多少头奶牛可以当明星. 可以看出,当将每一个强连通…
The Cow Prom Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1451   Accepted: 922 Description The N (2 <= N <= 10,000) cows are so excited: it's prom night! They are dressed in their finest gowns, complete with corsages and new shoes. T…
题目大意:问一个有向图是否任意两点在两个方向上互相连通. 有向图强连通分量定义:如果一个图中的任意两点在两个方向上都互相连通,则该图为强连通图.极大强连通图为有向图的强连通分量(注意是极大,不是最大.一个图会有多个强连通分量).感性理解,强连通图就是多个环,或者一个点连接在一起所产生的图. 如何求?定义节点cur->Low,cur的子搜索树节点a中如果存在边(a,b),使得b->DfsN小于cur->DfsN,则cur->Low=min foreach b{b->DfsN},…
点击打开链接 有向图强联通,Kosaraju算法 缩点后分别入度和出度为0的点的个数 answer = max(a, b); scc_cnt = 1; answer = 0 #include<cstdio> #include<algorithm> #include<vector> #include<cstring> #include<stack> using namespace std; const int maxn = 20000 + 10;…
codevs 题意:求最大强连通分量的大小以及所包含的顶点有哪些 Tarjan算法 #include<iostream> #include<queue> #include<list> #include<vector> #include<cstring> #include<set> #include<stack> #include<map> #include<cmath> #include<al…
Tarjan算法 Tarjan算法是基于dfs算法,每一个强连通分量为搜索树中的一颗子树.搜索时,把当前搜索树中的未处理的结点加入一个栈中,回溯时可以判断栈顶到栈中的结点是不是在同一个强连通分量中.当dfn[u]=low[u]时,以u为根的搜索子树上的所有结点是一个强连通分量,其中dfn[]值表示结点的深度优先数,low[]值表示结点可以到达的优先数最小的祖先. Tarjan伪代码如下: Tarjan(u) { dfn[u] = low[u] = ++dep //dfn[]和low[]的初值 S…
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 22886    Accepted Submission(s): 9891 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A…
题目链接: 点击打开链接 题意: 给定一个有向图,求: 1) 至少要选几个顶点.才干做到从这些顶点出发,能够到达所有顶点 2) 至少要加多少条边.才干使得从不论什么一个顶点出发,都能到达所有顶点     顶点数<= 100 求完强连通分量后,缩点,计算每一个点的入度,出度. 第一问的答案就是入度为零的点的个数, 第二问就是max(n,m) // 入度为零的个数为n, 出度为零的个数为m. //kuangbin巨巨分析非常棒! #include<cstdio> #include<cs…