对numpy中shape的理解】的更多相关文章

from:http://blog.csdn.net/by_study/article/details/67633593 环境:Windows, Python3.5 一维情况: >>>> import numpy as np >>> a = np.array([2,3,33]) >>> a array([ 2 3 33 ]) >>> print(a) [ 2 3 33 ] >>> a.shape (3, )>…
broadcast 是 numpy 中 array 的一个重要操作. 首先,broadcast 只适用于加减. 然后,broadcast 执行的时候,如果两个 array 的 shape 不一样,会先给“短”的那一个,增加高维度“扩展”(broadcasting),比如,一个 2 维的 array,可以是一个 3 维 size 为 1 的 3维 array. 类似于: shape(1,3,2) = shape(3,2) 最后,比较两个 array(扩展后的),按照 dimension 从低到高,…
转载自:https://blog.csdn.net/qq_28618765/article/details/78081959和https://www.jianshu.com/p/e083512e4f4c shape函数是numpy.core.fromnumeric中的函数,它的功能是读取矩阵的长度,比如shape[0]就是读取矩阵第一维度的长度. shape的输入参数可以是一个整数(表示维度),也可以是一个矩阵. 参数是一个数时小括号内没有矩阵符号中括号[],返回空: >>> impor…
>>> w=np.zeros((5,6))>>> warray([[ 0.,  0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.,  0.],       [ 0.,  0.,  0.,  0.,  0.,  0.]]) >>> w.shap…
[开发技巧]·Numpy中对axis的理解与应用 1.问题描述 在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数. 一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行. 但是这样的描述并不能让我们真正理解axis的含义.下面我一个三维Array,来带领大家深入理解axis 2.实战讲解 >>> import numpy as np >>> arrays…
numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属性,下面是对应的理解 numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数.有时候我们可能需要知道某一维的特定维数. 二维情况 >>> import numpy as np >>> y = np.array([[1,2,3],[4,5,6]]) &…
目录 ndarray是什么 ndarray的设计哲学 ndarray的内存布局 为什么可以这样设计 小结 参考 博客:博客园 | CSDN | blog 本文的主要目的在于理解numpy.ndarray的内存结构及其背后的设计哲学. ndarray是什么 NumPy provides an N-dimensional array type, the ndarray, which describes a collection of "items" of the same type. Th…
参考原文链接(英文版):https://www.sharpsightlabs.com/blog/numpy-axes-explained/:中文版:https://www.jianshu.com/p/f4e9407f9f9d 学好数据分析,得学好Numpy:学好Numpy,首先彻底理解“轴”的概念! 1. 在二维NumPy数组中,轴是沿行和列的方向  AXIS 0 轴是沿着行(rows)的方向 在NumPy数组中,axis 0 是第一轴.对于二维或多维数组,axis 0 是沿行(row)向下的轴…
今天用到了shape,就顺便学习一下,这个shape的作用就是要把矩阵进行行列转换,请看下面的几个例子就明白了: >>> import numpy as np >>> x = np.array([1,2,3,4]) >>> x.shape (4,) >>> y = np.zeros([2,3,4]) >>> y.shape (2, 3, 4) >>> y.shape = (3,8) >>…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…