gcp上使用gpu来学习tensorflow】的更多相关文章

1080ti显卡实在是太贵了,8k一张的价格,让我感到无耐.还好,有gcp的gpu来训练,最有意思的是,他还提供300美元,让你挥霍. 1.当然是申请gcp的账号. 2.登录后,左侧->"IAM和管理“->"配额” 3.在“指标”->"全不选"->搜索框输入”k80“,选中”Nvidia K80 GUPs". 4.这时列表为可用单位,在“位置”中找到你的vps所在地区. 5.在左侧方框选中后,点击上方的“修改配额”(这是配额应为0,…
随着网络越来约复杂,训练难度越来越大,有条件的可以采用GPU进行学习.本文介绍如何在GPU环境下使用TensorFlow.NET. TensorFlow.NET使用GPU非常的简单,代码不用做任何修改,更换一个依赖库即可,程序是否能运行成功主要看环境是否安装正确,这篇文章重点介绍的也就是环境的安装了. CUDA和cuDNN的安装都比较容易,重点是要装对版本. 1.确认安装版本 首先电脑得有一块NVIDIA的显卡! 在桌面右键选择NVIDIA控制面板,在程序左下角点击 :系统信息. 首先要确认显卡…
TVM 优化 ARM GPU 上的移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与桌面平台上所做的类似,在移动设备中使用 GPU 既有利于推理速度,也有利于能源效率.但是,大多数现有的深度学习框架并不很好地支持移动 GPU.难点在于移动 GPU 架构和桌面 GPU 架构之间的区别.这意味着在移动 GPU 上进行优化需要特别努力.非平凡的额外工作最终导致移动 GPU 在大多数深度学习框架中支持不力. TVM 通过引入统一的 IR 堆栈,解决为不同硬件部署的困…
TVM在ARM GPU上优化移动深度学习 随着深度学习的巨大成功,将深度神经网络部署到移动设备的需求正在迅速增长.与在台式机平台上所做的类似,在移动设备中使用GPU可以提高推理速度和能源效率.但是,大多数现有的深度学习框架都不能很好地支持移动GPU.困难在于移动GPU架构和台式机GPU架构之间的差异.这意味着在移动GPU上进行优化需要付出特殊的努力.繁琐的额外工作最终导致大多数深度学习框架中对移动GPU的支持不佳. TVM通过引入统一的IR堆栈解决了部署不同硬件的困难,通过该IR堆栈可以轻松完成…
http://blog.csdn.net/jerr__y/article/details/53695567 前言:本文主要介绍如何在 ubuntu 系统中配置 GPU 版本的 tensorflow 环境.主要包括: - cuda 安装 - cudnn 安装 - tensorflow 安装 - keras 安装 其中,cuda 安装这部分是最重要的,cuda 安装好了以后,不管是 tensorflow 还是其他的深度学习框架都可以轻松地进行配置. 我的环境: Ubuntu14.04 + TITAN…
软件 版本 Window10 X64 python 3.6.4(64位) CUDA CUDA Toolkit 9.0 (Sept 2017) CuDNN cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0 以上版本测试通过. 安装步骤: 1.安装python,记得要勾选pip. 2.检测是否支持CUDA. NVIDIA官网查询,具体见:https://developer.nvidia.com/cuda-gpus,就可以知道是否可以使用带GPU支持的TensorFlo…
个core可以有不同的代码路径.对于反向传播算法来说,基本计算就是矩阵向量乘法,对一个向量应用激活函数这样的向量化指令,而不像在传统的代码里会有很多if-else这样的逻辑判断,所以使用GPU加速非常有用. 但即使这样,单机的计算能力还是相对有限的. 深度学习开源工具 从数学上来讲,深度神经网络其实不复杂,我们定义不同的网络结构,比如层次之间怎么连接,每层有多少神经元,每层的激活函数是什么.前向算法非常简单,根据网络的定义计算就好了. 而反向传播算法就比较复杂了,所以现在有很多深度学习的开源框架…
TensorFlow 是用于机器学习任务的开源软件.它的创建者 Google 希望提供一个强大的工具以帮助开发者探索和建立基于机器学习的应用,所以他们在去年作为开源项目发布了它.TensorFlow 是一个非常强大的工具,专注于一种称为深层神经网络deep neural network(DNN)的神经网络. 深层神经网络被用来执行复杂的机器学习任务,例如图像识别.手写识别.自然语言处理.聊天机器人等等.这些神经网络被训练学习其所要执行的任务.由于训练所需的计算是非常巨大的,在大多数情况下需要 G…
在学习TensorFlow的过程中,我们需要知道某个tensor的值是什么,这个很重要,尤其是在debug的时候.也许你会说,这个很容易啊,直接print就可以了.其实不然,print只能打印输出shape的信息,而要打印输出tensor的值,需要借助class tf.Session, class tf.InteractiveSession.因为我们在建立graph的时候,只建立tensor的结构形状信息,并没有执行数据的操作. 一 class tf.Session 运行tensorflow操作…
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661.作为小码农的我,最近一直在学习tensorflow,主要使用python的接口进行学习.本博文主要以/tensorflow/tensorflow/models/image/mnist(github上下载)作为例程,讲解python代码的实现. 读代码的时候,建议大家理清主线,从主函数开始,调用到那个子函数时,再去阅读子函数的功能.我在minist的python代码中…