Spark对接Kafka、HBase】的更多相关文章

本项目是为网站日志流量分析做的基础:网站日志流量分析系统,Kafka.HBase集群的搭建可参考:使用Docker搭建Spark集群(用于实现网站流量实时分析模块),里面有关于该搭建过程 本次对接Kafka及HBase是基于使用Docker搭建Spark集群(用于实现网站流量实时分析模块)搭建的6个Docker容器来实现的对接. 代码地址:https://github.com/Simple-Coder/sparkstreaming-demo 一.SparkStreaming整合Kafka 1.m…
在这里,非常感谢下面的著名大牛们,一路的帮助和学习,给予了我很大的动力! 有了Hadoop,再次有了Spark,一次又一次,一晚又一晚的努力相伴! HBase简介(很好的梳理资料) 1. 博客主页:http://jiajun.iteye.com/ 2.博客主页:http://www.cnblogs.com/ggjucheng/ 3.博客主页:http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/ 4.博客主页:http:/…
spark streaming 对接kafka 有两种方式: 参考: http://group.jobbole.com/15559/ http://blog.csdn.net/kwu_ganymede/article/details/50314901 Approach 1: Receiver-based Approach 基于receiver的方案: 这种方式使用Receiver来获取数据.Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获…
一.准备环境: 创建Kafka Topic和HBase表 1. 在kerberos环境下创建Kafka Topic 1.1 因为kafka默认使用的协议为PLAINTEXT,在kerberos环境下需要变更其通信协议: 在${KAFKA_HOME}/config/producer.properties和config/consumer.properties下添加 security.protocol=SASL_PLAINTEXT 1.2 在执行前,需要在环境变量中添加KAFKA_OPT选项,否则ka…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
日志格式202.108.16.254^A1546795482.600^A/cntv.gif?appId=3&areaId=8213&srcContId=2535575&areaType=1&srcContName=%E5%88%87%E7%89%B9%E9%87%8C%E6%A2%85%E5%BC%80%E4%BA%8C%E5%BA%A6+%E5%8D%B0%E5%BA%A64-1%E5%A4%A7%E8%83%9C%E6%B3%B0%E5%9B%BD%E5%96%9C%E…
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计. 本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka 在舆情项目中的应用,最后将自己在Spark Streaming+kafka 的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补…
一.Receiver模式 1. receiver模式原理图 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也 可以修改.receiver task对接收过来的数据进行存储和备份,这个过程会有节点之间的数据传输.备份完成后去zookeeper中更新消费偏移量,然后向Driver中的 receiver tracker汇报数据的位置.最后Driv…
// scalastyle:off println package org.apache.spark.examples.streaming import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.stream…