hive 总结四(优化)】的更多相关文章

一.本课程是怎么样的一门课程(全面介绍)    1.1.课程的背景       作为企业Hadoop应用的核心产品,Hive承载着FaceBook.淘宝等大佬 95%以上的离线统计,很多企业里的离线统计甚至全由Hive完成,如我所在的电商.       Hive在企业云计算平台发挥的作用和影响愈来愈大,如何优化提速已经显得至关重要.       Hive作业的规模决定着优化层级,一个Hive作业的优化和一万的Hive作业的优化截然不同.       拥有1万多个Hive作业的大电商如何进行Hiv…
关键词:hdp , hive , StorageHandler 了解Hive StorageHandler的同学都知道,StorageHandler作为Hive适配不同存储的拓展类,同时肩负着HiveStoragePredicateHandler的角色对相关存储做下推优化,核心方法如下: /** * HiveStoragePredicateHandler is an optional companion to {@link * HiveStorageHandler}; it should onl…
在一些特定的业务场景下,使用hive默认的配置对数据进行分析,虽然默认的配置能够实现业务需求,但是分析效率可能会很低. Hive有针对性地对不同的查询进行了优化.在Hive里可以通过修改配置的方式进行优化. 以下,几种方式调优的属性. 1.列裁剪 在通过Hive读取数据的时候,并不是所有的需求都要获取表内的所有的数据.有些只需要读取所有列中的几列,而忽略其他列的的数据. 例如,表Table1包含5个列Column1.Column2.Column3.Column4.Column5.下面的语句只会在…
本文参考:黑泽君相关博客 本文是我总结日常工作中遇到的坑,结合黑泽君相关博客,选取.补充了部分内容. 表的优化 小表join大表.大表join小表 将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率: 再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存.在map端完成reduce. 实际测试发现:新版的hive已经对小表JOIN大表和大表JOIN小表进行了优化.小表放在左边和右边已经没有明显区别 hive> set hiv…
优化 数据优化 一.从大表拆分成小表(更快地检索) 引用:Hive LanguageManual DDL eg2:常用于分表 create table if not exists default.cenzhongman_2 AS select ip,date from default.cenzhongman; 二.使用外部表(多部门共用,指定存储目录,删表不删数据),分区表(按月按XXX分区) 引用:Hive LanguageManual DDL #创建外部表 CREATE EXTERNAL T…
一.查看HQL执行计划explain 1.explain hive在执行的时候会把所对应的SQL语句都会转换成mapreduce代码执行,但是具体的MR执行信息我们怎样才能看出来呢? 这里就用到了explain的关键字,他可详细的表示出在执行所对应的语句所对应的MR代码. 语法格式如下.extended关键字可以更加详细的列举出代码的执行过程. Hive提供了一个EXPLAIN显示查询执行计划的命令.该语句的语法如下: EXPLAIN [EXTENDED|CBO|AST|DEPENDENCY|A…
一.Join原则 将条目少的表/子查询放在Join的左边.原因:在Join的reduce阶段,位于Join左边的表的内容会被加载进内存,条目少的表放在左边,可以减少发生内存溢出的几率. 小表关联大表:用MapJoin把小表全部加载到内存在map端Join,避免reducer处理.如: select /*+ MapJoin(user)*/ l.session_id,u.username from user u join page_views l on u.id = l.user_id 二.控制ma…
Mapreduce自身的特点: 1.IO和网络负载大:优化策略:减少IO和网络负载. 2.内存负载不大.优化策略:增大内存使用率: 3.CPU负载不大.优化策略:增大CPU使用率: (hive的优化应当根据mapreduce的作业特点和自己的作业实际需求进行优化) 优化1.合并输入 淘宝一个大型项目,上万Hive作业进行合并输入. A.单个作业 B.多个作业 作业间的血缘关系:作业间相同的查询,相同的源表. 优化2.源表归纳,常用复杂或低效统计统一给出,以避免上层作业过多计算 如低性能的UDF.…
  Hive会将执行的SQL语句翻译成对应MapReduce任务,当SQL语句比较简单时,性能还是可能处于可接受的范围.但是如果涉及到非常复杂的业务逻辑,特别是通过程序的方式(一些模版语言生成)生成大量判断语句时,出现的问题就会比较多.   精简Hive使用的SQL   当前项目中如果打包的数量过多,是当前性能的最大瓶颈,在做SQL优化时,至少会存在一个这样的SQL,当打包数量上百甚至到1千后,就会产生大量的 IF/OR 语句: IF(( ( true == true AND caid==200…
一.fetch抓取 fetch 抓取是指,hive中对某些情况的查询可以不必使用MapReduce计算.(1)把hive.fetch.task.conversion 设置成none,然后执行查询语句,都会执行mapreduce程序. hive(default)>set hive.fetch.task.conversion=none; (2) 把hive.fetch.task.conversion 设置成more,然后执行查询语句. 二.本地模式 用户可以通过设置 hive.exec.mode.l…
第6章 HBase API 操作6.1 环境准备6.2 HBase API6.2.1 判断表是否存在6.2.2 抽取获取 Configuration.Connection.Admin 对象的方法以及关闭资源的方法6.2.3 创建表(admin)6.2.4 删除表(admin)6.2.5 向表中插入数据(put)6.2.6 删除多行数据(delete)6.2.7 获取所有数据(scan)6.2.8 获取某一行数据(get)6.2.9 获取某一行指定“列族:列”的数据(get)6.3 MapRedu…
一.Fetch Task 在执行hive代码的时候,一条简单的命令大部分都会转换成为mr代码在后台执行, 但是有时候我们仅仅只是想获取一部分数据而已,仅仅是获取数据,还需要转化成为mr去执行吗? 那个也太浪费时间和内存啦,所以有一个hive的配置如下所示: #在hive-default.xml.template默认配置中可知:SELECT STAR, FILTER on partition columns, LIMIT only 这些查询是不走MapReduce的 <property> <…
1. mapjoin优化适合小表join大表 set hive.optimize.skewjoin=true; //有数据倾斜时开启负载均衡,默认false set hive.auto.convert.join=true; //设置自动选择MapJoin,默认是true set hive.auto.convert.join.noconditionaltask=true; //map-side join set hive.auto.convert.; //多大的表可以自动触发放到内层LocalTa…
“国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友谊. 注意,本文讨论的hive join优化器是从hive 0.11.0版本起添加的, 本文描述了Hive查询执行计划的优化,以提高join效率并减少对用户提示的需求. Hive自动识别各种用例并对其进行优化.Hive 0.11改进了这些情况的优化器: 决策支持系统或数据仓库的简单模型是星型模型,其…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了…
Apache Hive作为处理大数据量的大数据领域数据建设核心工具,数据量往往不是影响Hive执行效率的核心因素,数据倾斜.job数分配的不合理.磁盘或网络I/O过高.MapReduce配置的不合理等等才是影响Hive性能的关键. Hive在执行任务时,通常会将Hive SQL转化为MapReduce job进行处理.因此对Hive的调优,除了对Hive语句本身的优化,也要考虑Hive配置项以及MapReduce相关的优化.从更底层思考如何优化性能,而不是仅仅局限于代码/SQL的层面.列裁剪和分…
Hive作为大数据平台举足轻重的框架,以其稳定性和简单易用性也成为当前构建企业级数据仓库时使用最多的框架之一. 但是如果我们只局限于会使用Hive,而不考虑性能问题,就难搭建出一个完美的数仓,所以Hive性能调优是我们大数据从业者必须掌握的技能.本文将给大家讲解Hive性能调优的一些方法及技巧. 本文首发于公众号:五分钟学大数据 Hive性能问题排查的方式 当我们发现一条SQL语句执行时间过长或者不合理时,我们就要考虑对SQL进行优化,优化首先得进行问题排查,那么我们可以通过哪些方式进行排查呢.…
一.CLI连接 进入到 bin 目录下,直接输入命令: [root@node21 ~]# hive SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding /lib/log4j-slf4j-impl-.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding /share/hadoop/common/lib/slf4j-log4j1…
今天我们来讲一下如何看懂Hive的查询计划. hive的执行计划包括三部分 – Abstract syntax tree – 可以直接忽略  – Stage dependencies – 依赖 – Stage plans – hive如何执行任务的信息. 下面还是以一个案例作为说明 设置自动连接为false的话,要走5步. 4 Map Reduces tells you something is not right.        Stage:    Stage-1               …
一.hive函数 1.hive内置函数 (1)内容较多,见< Hive 官方文档>            https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF        (2)详细解释:            http://blog.sina.com.cn/s/blog_83bb57b70101lhmk.html (3) 测试内置函数的快捷方式: 1.创建一个 dual 表 create table dual…
1.内置运算符 1.1关系运算符 运算符 类型 说明 A = B 所有原始类型 如果A与B相等,返回TRUE,否则返回FALSE A == B 无 失败,因为无效的语法. SQL使用”=”,不使用”==”. A <> B 所有原始类型 如果A不等于B返回TRUE,否则返回FALSE.如果A或B值为”NULL”,结果返回”NULL”. A < B 所有原始类型 如果A小于B返回TRUE,否则返回FALSE.如果A或B值为”NULL”,结果返回”NULL”. A <= B 所有原始类型…
转自:https://www.cnblogs.com/qingyunzong/p/8715925.html 一.CLI连接 进入到 bin 目录下,直接输入命令: [hadoop@hadoop3 ~]$ hive SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/home/hadoop/apps/apache-hive-2.3.3-bin/lib/log4j-slf4j-i…
软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos 192.168.179.201: m1 192.168.179.202: m2 192.168.179.203: m3 m1: Zookeeper, Namenode, DataNode, ResourceManager, NodeManager, Master, Worker m2: Zooke…
在 hive 中分区表是很常用的,分桶表可能没那么常用,本文主讲分区表. 概念 分区表 在 hive 中,表是可以分区的,hive 表的每个区其实是对应 hdfs 上的一个文件夹: 可以通过多层文件夹的方式创建多层分区: 通过文件夹把数据分开 分桶表 分桶表中的每个桶对应 hdfs 上的一个文件: 通过文件把数据分开 在查询时可以通过 where 指定分区(分桶),提高查询效率 分区表基本操作 1. 创建分区表 partitoned by 指定分区,后面加 分区字段 和 分区字段类型,可以加多个…
Hive四大表类型内部表.外部表.分区表和桶表 一.概述 总体上Hive有四种表:外部表,内部表(管理表),分区表,桶表.分别对应不同的需求.下面主要讲解各种表的适用情形.创建和加载数据方法. 二.具体内容 1.内部表 创建内部表和加载数据   create table emp_inner(   empno int,   ename string,   job string,   mgr int,   hiredate string,   sal double,   comm double,  …
转自:http://www.csdn.net/article/2015-01-13/2823530 一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,Reduce,Spill,Shuffle,Sort等多个阶段,所以针对Hive查询的优化可以大致分为针对MR中单个步骤的优化(其中又会有细分),针对MR全局的优化,和针对整个查询(多MR Job)的优化,下文会分别阐述. 在开始之前,先把MR的流程图帖出来(摘自Hadoop权威指南),方便后面对照.另…
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,mi…
一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,Reduce,Spill,Shuffle,Sort等多个阶段,所以针对Hive查询的优化可以大致分为针对MR中单个步骤的优化(其中又会有细分),针对MR全局的优化,和针对整个查询(多MRJob)的优化,下文会分别阐述. 在开始之前,先把MR的流程图帖出来(摘自Hadoop权威指南),方便后面对照.另外要说明的是,这个优化只是针对Hive 0.9版本,而不是后来Hortonwork发起Stinger项…
Hive优化 Hive优化目标 在有限的资源下,执行效率更高 常见问题 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce 执行计划 explain [extended] hql 样例 select col,count(1) from test2 group by col; explain select col,count(1) from test2 group by col; Hive表优化 分区 静态分区 动态分区 set…
hive优化目标 在有限的资源下,运行效率高. 常见问题 数据倾斜.Map数设置.Reduce数设置等 hive运行 查看运行计划 explain [extended] hql 例子 explain select no,count(*) from testudf group by no; explain extended select no,count(*) from testudf group by no; 运行阶段 STAGE DEPENDENC1ES: Stage-1 is a root…