Introduction 当前主要的非监督方法都采用相同的训练数据集,这些数据集在不同摄像头中是对称的,即不存在单个行人的错误项,这些方法将在实际场景中效果下降.在本方法中,作者引入了非对称数据,如下图所示,提出了一个在真实环境下的非监督深度神经网络. 提出一个标签估计方法:a novel Robust Anchor Embeding (RACE) framework. Proposed Method (1)概述: 通俗来说,先固定几个序列,给这几个序列加上标签作为anchor,然后输入一个未标…
论文源址:https://arxiv.org/abs/1709.04609 摘要 该文提出了基于深度学习的实例分割框架,主要分为三步,(1)训练一个基于ResNet-101的通用模型,用于分割图像中的前景和背景.(2)将通用模型进行微调成为一个实例分割模型,借助于视频第一帧的标签文件对不同个体进行实例分割.同时,从实例分割模型中得到每一个物体的像素级score map.每张score map代表物体类别的概率,并且只和视频第一帧的ground truth 计算.(3)提出空间传播网络用于增强前面…
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对Faster R-CNN的解读:https://www.cnblogs.com/pursuiting/ 摘要 目标检测依赖于区域proposals算法对目标的位置进行预测.SPPnet和Fast R-CNN已经减少了检测网络的运行时间.然而proposals的计算仍是一个重要的瓶颈.本文提出了一个R…
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的基本组件.但由于金字塔表征的特征需要消耗较多的内存及计算资源,因此,深度学习尽量避免使用金字塔特征.本文利用深度卷积网络中自带的多尺寸信息构建特征金字塔.本文搭建了具有横向连接的自上而下的结构FPN,从而在所有尺寸上构建高层次的语义特征.本文在Faster R-CNN的基础结构上增加了FPN结构,并…
论文源址:https://arxiv.org/abs/1406.4729 tensorflow相关代码:https://github.com/peace195/sppnet 摘要 深度卷积网络需要输入固定尺寸大小的图片(224x224),这引入了大量的手工因素,同时,一定程度上,对于任意尺寸的图片或者子图会降低识别的准确率.SPP-net对于任意大小的图片,可以生成固定长度的特征表述.SPP-net对于变形的图片仍有一定的鲁棒性.基于上述优点,SPP-net会提高基于CNN的图像分类的效果. S…
论文源址:http://www.cs.berkeley.edu/~rbg/#girshick2014rcnn 摘要 在PASCAL VOC数据集上,最好的方法的思路是将低级信息与较高层次的上下文信息进行结合.该文的两个亮点:(1)将CNN应用到region proposals 用于对目标物体的定位.(2)对于较少数量的标签数据,先在规模较大的数据集上进行有监督的预训练,然后针对特定场景进行微调,发现性能提升的较大.R-CNN:region with CNN features 介绍 特征问题:视觉…
论文源址:https://arxiv.org/abs/1511.07122 tensorflow Github:https://github.com/ndrplz/dilation-tensorflow 摘要 该文提出了空洞卷积模型,在不降低分辨率的基础上聚合图像中不同尺寸的上下文信息,同时,空洞卷积扩大感受野的范围. 介绍 语义分割具有一定的挑战性,因为要进行像素级的分类,同时,要考虑不同尺寸大小的上下文信息的推理.通过卷积外加反向传播的学习算法,使分类的准确率得到大幅度的提升.由原始的分类到…
论文原址:https://arxiv.org/abs/1703.10295 github:https://github.com/lachlants/denet 摘要 本文重新定义了目标检测,将其定义为用于评估一个规模较大但较为稀疏的的边界框依赖性的概率分布.随后,作者确定了一个评价稀疏分布的机制,Directed Sparse Sampling并将其应用至end-to-end的检测模型当中.该方法扩展了以往SOTA检测模型,并提高了eval 速率同时减少了人工设计.该方法存在两个创新点, I:…
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构,关注度较少的训练过程对于检测器的成功检测也是十分重要的.本文发现,检测性能主要受限于训练时,sample level,feature level,objective level的不平衡问题.为此,提出了Libra R-CNN,用于对目标检测中平衡学习的简单有效的框架.主要包含三个创新点:(1)Io…
论文原址:https://arxiv.org/abs/1902.05093 github:https://github.com/lingtengqiu/Deeperlab-pytorch 摘要 本文提出了一种bottoom-up,single-shot的全景图像分析方法.全景图像分析包含"stuff"形式(类别)的语义分割及“thing”形式(区别不同个体)的实例分割.目前,全景图像分析的经典方法是由语义分割任务及实例分割任务的独立的模块组成,同时其需要进行多次inference操作.…