CoarseGrainedExecutorBackend 上一篇,我们主要分析了一次作业的提交过程,严格说是在driver端的过程,作业提交之后经过DAGScheduler根据shuffle依赖关系划分成多个stage,依次提交每个stage,将每个stage创建于分区数相同数量的Task,并包装成一个任务集,交给TaskSchedulerImpl进行分配.TaskSchedulerImpl则会根据SchedulerBackEnd提供的计算资源(executor),并考虑任务本地性,黑名单,调度…
PySpark 的背后原理 Spark主要是由Scala语言开发,为了方便和其他系统集成而不引入scala相关依赖,部分实现使用Java语言开发,例如External Shuffle Service等.总体来说,Spark是由JVM语言实现,会运行在JVM中.然而,Spark除了提供Scala/Java开发接口外,还提供了Python.R等语言的开发接口,为了保证Spark核心实现的独立性,Spark仅在外围做包装,实现对不同语言的开发支持,本文主要介绍Python Spark的实现原理,剖析p…
Task的运行过程分析 Task的运行通过Worker启动时生成的Executor实例进行, caseRegisteredExecutor(sparkProperties)=> logInfo("Successfullyregistered with driver") //Make this host instead of hostPort ? executor= newExecutor(executorId, Utils.parseHostPort(hostPort)._1,s…
之前记录Yarn:Hadoop2.0之YARN组件,这次使用Docker搭建Spark On  Yarn 一.各运行模式 1.单机模式 该模式被称为Local[N]模式,是用单机的多个线程来模拟Spark分布式计算,通常用来验证开发出来的应用程序逻辑上没有问题.其中N代表可以使用N个线程,每个线程拥有一个core.如果不指定N,则默认是1个线程(该线程拥有1个core) 指令实例: 1)spark-shell --master local 2)spark-shell --master local…
Spark中的闭包 闭包的作用可以理解为:函数可以访问函数外部定义的变量,但是函数内部对该变量进行的修改,在函数外是不可见的,即对函数外源变量不会产生影响. 其实,在学习Spark时,一个比较难理解的点就是,在集群模式下,定义的变量和方法作用域的范围和生命周期.这在你操作RDD时,比如调用一些函数map.foreach时,访问其外部变量进行操作时,很容易产生疑惑.为什么我本地程序运行良好且结果正确,放到集群上却得不到想要的结果呢? 首先通过下边对RDD中的元素进行求和的示例,来看相同的代码本地模…
Spark on YARN有两种运行模式,如下 1.yarn-cluster:适合于生产环境.        Spark的Driver运行在ApplicationMaster中,它负责向YARN ResourceManager申请资源,并监督作业的运行状况.当用户提交了作业之后,    就可以关掉Client(启动Spark作业的客户端不需要一直存在于整个Spark作业运行生命周期),作业会继续在YARN上运行.yarn-cluster不适合    交互式应用.            2.yar…
本课主题 Broadcast 运行原理图 Broadcast 源码解析 Broadcast 运行原理图 Broadcast 就是将数据从一个节点发送到其他的节点上; 例如 Driver 上有一张表,而 Executor 中的每个并行执行的Task (100万个Task) 都要查询这张表的话,那我们通过 Broadcast 的方式就只需要往每个Executor 把这张表发送一次就行了,Executor 中的每个运行的 Task 查询这张唯一的表,而不是每次执行的时候都从 Driver 中获得这张表…
Spark 定制版:005~贯通Spark Streaming流计算框架的运行源码   本讲内容: a. 在线动态计算分类最热门商品案例回顾与演示 b. 基于案例贯通Spark Streaming的运行源码 注:本讲内容基于Spark 1.6.1版本(在2016年5月来说是Spark最新版本)讲解. 上节回顾 上节课主要从事务视角为大家探索Spark Streaming架构机制:Spark Streaming程序分成而部分,一部分是Driver,另外一部分是Executor.通过对Driver和…
本文是董西成的Hadoop技术内幕一书的读书章节总结. 第八章 Task运行过程分析 所有Task需要周期性地向TaskTracker汇报最新进度和计数器值,而这正是由Reporter组件实现的,其中Reporter汇报的信息中包含两个部分:任务执行进度以及任务计数器值.任务执行进度hadoop采用简单的线性模型计算每个阶段的进度值,对于Map Task而言,作为一个大阶段不再分解,一般实用RecordReader中的getProgress()方法划定执行进度:对于Reduce Task而言,可…
微信小程序 web 端实时运行工具 https://chemzqm.github.io/wept/…