题面 传送门 前置芝士 \(MTT\),多项式多点求值 题解 这题法老当初好像讲过--而且他还说这种题目如果模数已经给定可以直接分段打表艹过去 以下是题解 我们设 \[F(x)=\prod_{i=0}^{s-1}(x+i)\] 分治\(FFT\)即可求出 然后我们用多点求值求出\(x=1,s+1,2s+1,...,s^2-s+1\)时的答案 这样的话可以计算出\((s^2)!\),剩下没计算的部分直接暴力就是了 如果我们取\(s=\sqrt{n}\),复杂度大概就是\(O(s\log^2s)\)…
LINK:P5667 拉格朗日插值2 给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n). 如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像有点大. 不妨 直接考虑拉格朗日插值. 设此时要求f(k) 那么则有 \(\sum_{i=0}^nf(i)\frac{\Pi_{i\neq j}(k-j)}{\Pi_{i\neq j} (i-j)}\) 可以化简一下 \(f(k)=\sum_{i=0}^nf(i)\frac{ \Pi_{i\neq…
题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(…
题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\)成立的最小正整数\(n\)为\(a\)模\(p\)的阶,记作\(\delta_p(a)\). 例:\(\delta_7(2)=3\). 原根 设\(p\)是正整数,\(a\)是整数,若\(\delta_p(a)=\varphi(m)\),则称\(a\)为模\(p\)的一个原根. 从另一方面来说,若\(g…
传送门 人傻常数大.jpg 因为求逆的时候没清零结果调了几个小时-- 前置芝士 多项式除法,多项式求逆 什么?你不会?左转你谷模板区,包教包会 题解 首先我们要知道一个结论\[f(x_0)\equiv f(x)\pmod{(x-x_0)}\] 其中\(x_0\)为一个常量,\(f(x_0)\)也为一个常量 证明如下,设\(f(x)=g(x)(x-x_0)+A\),也就是说\(A\)是\(f(x)\)对\((x-x_0)\)这个多项式取模之后的结果 因为\((x-x_0)\)的最高次项为\(1\)…
code: #include <bits/stdc++.h> #define ll long long #define ull unsigned long long #define setIO(s) freopen(s".in","r",stdin) // , freopen(s".out","w",stdout) using namespace std; char buf[100000],*p1,*p2; #de…
题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ x^n)\] \[f^2(x)g^2(x)-2f(x)g(x)+1\equiv 0\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv 1\ (mod\ x^{2n})\] \[2f(x)g(x)-f^2(x)g^2(x)\equiv f(x)g'(x)…
题目:https://www.luogu.org/problemnew/show/P4238 看博客:https://www.cnblogs.com/xiefengze1/p/9107752.html https://www.cnblogs.com/Mychael/p/9045143.html 注意那个 \( \left\lceil n/2 \right\rceil \),因为如果 n = 6,那么 6 = 0+6 = 1+5 = 2+4 = 3+3,对 0,1,2,3 都有要求,所以下一层传…
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q)\leq n-m\)的多项式\(Q(x)\),满足\[A(x)=D(x)\times Q(x)+R(x)\] 其中\(R(x)\)可以看做是\(m-1\)次多项式(不足\(m-1\)次系数补\(0\)). 首先是想消除\(R(x)\)的影响. 对于一个\(n\)次多项式\(A(x)\),记\[A^R(x)=…
题目:https://www.luogu.org/problemnew/show/P4512 看博客:https://www.cnblogs.com/owenyu/p/6724611.html https://www.cnblogs.com/Mychael/p/9216906.html 注意取模那里的 NTT 范围就是模数的次数: 各处注意一下对系数数组取模(超出的位置赋0). 代码如下: #include<iostream> #include<cstdio> #include&l…
预备知识:FFT/NTT 多项式的逆 给定一个多项式 F(x)F(x)F(x),请求出一个多项式 G(x)G(x)G(x),满足 F(x)∗G(x)≡1(mod xn)F(x)*G(x) \equiv 1(mod\ x^n)F(x)∗G(x)≡1(mod xn). 系数对 998244353998244353998244353 取模,1≤n≤1051≤n≤10^51≤n≤105 首先将多项式的长度拓展至222的次幂,然后我们要求的是 G(x)∗F(x)≡1 (mod xn)G(x)*F(x) \…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(ll a,ll b){ ll res=1; for(;b;a=a*a%nmod,b>>=1)if(b&1)res=res*a%nmod; return res; } ll inv(ll n){ return qp(n,nmod-2); } //polynomial operations //…
\[\newcommand{\vct}[1]{\boldsymbol{#1}} \newcommand{\mat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\opn}[1]{\operatorname{#1}} \mathscr{\text{Defining }\LaTeX\text{ Macros...}} \]   我并没有透彻理解涉及知识点的严谨描述形式,所以本文大量用语是基于让读者理解而非让读者以此为研究依据的,烦请注意.   设现有…
概述 多项式求逆元是一个非常重要的知识点,许多多项式操作都需要用到该算法,包括多项式取模,除法,开跟,求ln,求exp,快速幂.用快速傅里叶变换和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的逆元. 前置技能 快速数论变换(NTT),求一个数$x$在模$p$意义下的乘法逆元. 多项式的逆元 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$A(x)\times B(x) \equiv 1 (mod…
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整…
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类对树的边进行轻重划分的操作,这样做的目的是为了减少某些链上的修改.查询等操作的复杂度. 目前总共有三类:重链剖分,实链剖分和并不常见的长链剖分 重链剖分 实际上我们经常讲的树剖,就是重链剖分的常用称呼. 对于每个点,选择最大的子树,将这条连边划分为重边,而连向其他子树的边划分为轻边. 若干重边连接在…
洛谷P4281:https://www.luogu.org/problemnew/show/P4281 思路 答案所在的点必定是三个人所在点之间路径上的一点 本蒟蒻一开始的想法是:先求出2个点之间的LCA 再求出此LCA和第3个点的LCA 但是没有考虑到有可能答案所在点可能比2个点之间的LCA深度更深 因为两点之间的LCA是两点共同能到达的深度最浅的一个点 所以我们可以考虑: 设a=LCA(x,y) 此时x和y到a点为最小花费 则此时z到a的花费可以用LCA(a,z)来计算 因此我们分别计算3种…
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模板题,直接贴上来. [代码] #include<queue> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; ; queue < int >…
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目传送门 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 接下来M行,每行三个整数a b w,表示a->b有一条权值为w的边(若w<0则为单向,否则双向) 输出格式: 共T行.对于每组数据,存在负环则输出一行"YE5"(不含引号),否则输出一行"N0"(不含引号). 输入输出样例 输入样例#1: 2…
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但是这次用last边已经不行了,只能拿76分.我们把跳fail边的过程放到串扫描完之后一次性进行. AC自动机 #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int&g…
原题链接:P1067 多项式输出 题目分析:学长推荐的OJ网站 --洛谷,发现挺好用的还可以下载提交出错的数据. 废话就不多说了,这道题属于基础题.提交出错主要是因为一些小细节不到位,这里就不一一赘述了,直接上代码吧! 代码如下: #include <bits/stdc++.h> using namespace std; const int MAX = 105; int n; int num[MAX]; int main() { int flag; cin >> n; for (i…
洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果memset清空ex数组显然是会T的,所以开一个bef用来记录需要清空哪个地方. #include<cstdio> #include<cstring> #include<algorithm> using namespace std; int n,m; ],to[],nx[],…
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以只做到 2*(r-l),能快一倍. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef long…
前言 多项式求逆还是爽的一批 Solution 考虑分治求解这个问题. 直接每一次NTT一下就好了. 代码实现 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<algorithm> #include<queue> #include<iostream> using namespace std; #define…
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg_{i-j}+\sum_{j=mid+1}^rf_jg_{i-j}\] 复杂度\(O(n\log^2n)\). 分治思路见:https://www.cnblogs.com/SovietPower/p/9366763.html 多项式求逆做法先坑着. //693ms 4.91MB #include <…
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor 三种问题的解决思路都是对多项式 \( a \) 构造一个 \( a' \),令 \( a' = b' * c' \): 那么只需要把 \( b \) 变换成 \( b' \),\( c \) 变换成 \( c' \),然后乘出 \( a' \),再逆变换得到 \( a \): 下面问题就变成如何快…
用tarjan变种求割边的模板题 其实还可以求出所有的边双(用栈),但本题不需要求. 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int N=1e5+10; 4 int head[N],nxt[N<<1],to[N<<1],tot; 5 pair<int,int> edge[N]; 6 int dfn[N],low[N],top/*st[N]*/; 7 int cnt,idx,anscnt…
题目描述 如题,给出一个网络图,以及其源点和汇点,求出其网络最大流. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含三个正整数ui.vi.wi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi) 输出格式: 一行,包含一个正整数,即为该网络的最大流. 输入输出样例 输入样例#1: 复制 4 5 4 3 4 2 30 4 3 20 2 3 20 2 1 30 1 3 40 输出样例#1:…