【446】Deep Learning】的更多相关文章

ref: 深度学习基础介绍 机器学习19 神经网络NN算法 ref: 深度学习基础介绍 机器学习11 神经网络算法应用上 ref: 深度学习基础介绍 机器学习12 神经网络算法应用下 ref: 神经网络NN算法(应用篇) 1. 组成部分:输入层(input layer),隐藏层(hidden layer),输出层(output layer) 2. 每层由单元(units)组成(圆圈) 3. input layer 是由训练集的实例特征向量传入 4. 经过连接结点的权重(weight)传入下一层,…
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys · July 2017) [论文作者] SHUAI ZHANG, University of New South WalesLINA YAO, University of New South WalesAIXIN SUN, Nanyang Technological UniversityYI TAY…
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一.虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识.是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人. 图灵(图灵,大家都知道吧.计算机和人工智能的鼻祖,分别对应于…
十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征. 高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器, 小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达. Deep lea…
9.3.Restricted Boltzmann Machine (RBM)限制波尔兹曼机 假设有一个二部图,每一层的节点之间没有链接,一层是可视层,即输入数据层(v),一层是隐藏层(h),如果假设所有的节点都是随机二值变量节点(只能 取0或者1值),同时假设全概率分布p(v,h)满足Boltzmann 分布,我们称这个模型是Restricted BoltzmannMachine (RBM). 下面我们来看看为什么它是Deep Learning方法.首先,这个模型因为是二部图,所以在已知v的情况…
九.Deep Learning的常用模型或者方法 9.1.AutoEncoder自动编码器 Deep Learning最简单的一种方法是利用人工神经网络的特点,人工神经网络(ANN)本身就是具有层次结构的系统,如果给定一个神经网络,我们假设其输出 与输入是相同的,然后训练调整其参数,得到每一层中的权重.自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征.自动编 码器就是一种尽可能复现输入信号的神经网络.为了实现这种复现,自动编码器就必须捕捉可以代表输入数据的最重要的…
好了,到了这一步,终于可以聊到Deep learning了.上面我们聊到为什么会有Deep learning(让机器自动学习良好的特征,而免去人工选取过程.还有参考人的分层视觉处理系统),我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达.那么多少层才合适呢?用什么架构来建模呢?怎么进行非监督训练呢? 五.Deep Learning的基本思想 假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为: I =>S1=>S2=>…..=…
因为我们要学习的是特征的表达,那么关于特征,或者说关于这个层级特征,我们需要了解地更深入点.所以在说Deep Learning之前,我们有必要再啰嗦下特征(呵呵,实际上是看到那么好的对特征的解释,不放在这里有点可惜,所以就塞到这了). 四.关于特征 特征是机器学习系统的原材料,对最终模型的影响是毋庸置疑的.如果数据被很好的表达成了特征,通常线性模型就能达到满意的精度.那对于特征,我们需要考虑什么呢? 4.1.特征表示的粒度 学习算法在一个什么粒度上的特征表示,才有能发挥作用?就一个图片来说,像素…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主…
9.5.Convolutional Neural Networks卷积神经网络 卷积神经网络是人工神经网络的一种,已成为当前语音分析和图像识别领域的研究热点.它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂 度,减少了权值的数量.该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过 程.卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移.比例缩放.倾斜或者共他形式的变形具有高度不变性. C…