首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「YunoOI 2007」rfplca
】的更多相关文章
Solution -「HNOI 2007」「洛谷 P3185」分裂游戏
\(\mathcal{Description}\) Link. 给定 \(n\) 堆石子,数量为 \(\{a_n\}\),双人博弈,每轮操作选定 \(i<j\le k\),使 \(a_i \leftarrow a_i-1\),\(a_j \leftarrow a_j+1\),\(a_k \leftarrow a_k+1\),并保证操作后所有 \(a_i\ge0\).求保证先手胜的第一步操作方案数和字典序最小的第一步操作. 多测,\(n\le21\),\(0\le a_i\le10^4…
Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率随机.求 \(\{b_n\}\) 中 LIS(最长上升子序列)的期望长度.对 \(10^9+7\) 取模. \(n\le6\),\(a_i\le10^9\). \(\mathcal{Solution}\) 欺负这个 \(n\) 小得可爱,直接 \(\mathcal O(n!)\) 枚举 \(…
Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\).依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次. 此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间.给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示…
Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\) 的数量,使得 \(H\) 是强连通图.答案模 \((10^9+7)\). \(n\le15\). \(\mathcal{Solution}\) 仙气十足的状压容斥. 令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得 \(S\) 强连通的选边方案数,那么 \(f(V…
Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\) 对车可以互相攻击. 的摆放方案数,对 \(998244353\) 取模. \(n\le2\times10^5\). \(\mathcal{Solution}\) 这道<蓝题>嗷,看来兔是个傻子. 从第一个条件入手,所有格子可被攻击,那就有「每行都有车」或「每列都有车」成立.不妨…
Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案不会重复使用.因为重复使用只会空加代价,而不会在特定时刻产生额外贡献.故而总决策方案应有 \(2^m\) 个,我们需要在这 \(2^m\) 个中找出最小可能花费. DFS 是最显然的算法,但显然不可做,不过它枚举状态的思路很好地把我们引向了 DP. 于是开始尝试设计 DP 状态. DP 状态定义中,…
Solution -「基环树」做题记录
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画出来是一种向外发散的有趣图案. 体现在[题目条件]上就是一个 \(n\) 个点 \(n\) 条边的连通图或保证每一个点的入度 / 出度为 \(1\) (有向图:前者称为外向树,后者称为内向树). 常常会把一些在树上做的 dp 放在基环树上以提高题目难度. 惯用思路是先把以环上的点为根的子树内的信息跑…
「WC 2007」剪刀石头布
题目链接 戳我 \(Solution\) 直接求很明显不太好求,于是考虑不构成剪刀石头布的情况. 我们现在假设一个人\(i\)赢了\(x\)场,那么就会有\(\frac{x*(x-1)}{2}\) 我们现在要最小化\(\frac{x*(x-1)}{2}\) 这样就很明显是费用流了吧 我们先不管费用 对于每个人向\(T\)连边,流量为\(n\) 队\(i,j\)之间的比赛建立点\(y\),\(s\)向\(y\)连边,若比赛结果不确定则将\(y\)分别向\(i\)和\(j\)连边.如果确定则向赢的人…
Solution -「WC 2022」秃子酋长
\(\mathscr{Description}\) Link. (It's empty temporarily.) 给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r]\),求升序枚举 \(a_{l..r}\) 时下标的移动距离. \(n,q\le5\times10^5\). \(\mathscr{Solution}\) 我写了个不加莫队,它慢死了. 我写了个 Ynoi 风格的纯纯分块预处理,它慢死了. 我写了个 polylog 的正解,它还是慢…
Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\times10^6\). \(\mathscr{Solution}\) 注意到一个显然的事实,对于某个前缀 \(S[:i]\) 以及两个起始下标 \(p,q\),若已有 \(S[p:i]<S[q:i]\),那么在所有的 \(j>i\) 中,都有 \(S[p:j]<S[q:j]\).换言之,最终…