Stacked Hourglass Networks for Human Pose Estimation key words:人体姿态估计 Human Pose Estimation 给定单张RGB图像,输出人体某些关键点的精确像素位置.堆叠式沙漏网络 Stacked Hourglass Networks多尺度特征  Features processed across all scales特征用于捕捉人体的空间关系 Capture spatial relationships associate…
Awesome Works  !!!! Table of Contents Conference Papers 2017 ICCV 2017 CVPR 2017 Others 2016 ECCV 2016 CVPR 2016 Others 2015 ICCV 2015 CVPR 2015 Others 2014 CVPR 2014 Others & Before Journal Papers Theses Datasets Challenges Other Related Papers Eval…
Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http://openaccess.thecvf.com/content_ECCV_2018/papers/Xuecheng_Nie_Mutual_Learning_to_ECCV_2018_paper.pdf Code: https://github.com/NieXC/pytorch-mula Rela…
Awesome Human Pose Estimation 2018-10-08 11:02:35 Copied from: https://github.com/cbsudux/awesome-human-pose-estimation A collection of resources on Human Pose Estimation. Why awesome human pose estimation? This is a collection of papers and resource…
http://blog.csdn.net/myarrow/article/details/51933651 1. 目前进展 1.1 相关资料      1)HANDS CVPR 2016      2)HANDS 2015 Dataset      3)CVPR 2016      4)Hand 3D Pose Estimation (Computer Vision for Augmented Reality Lab)          5)CVPR2016 Tutorial: 3D Deep…
2D Pose estimation主要面临的困难:遮挡.复杂背景.光照.真实世界的复杂姿态.人的尺度不一.拍摄角度不固定等. 单人姿态估计 传统方法:基于Pictorial Structures, DPM ▪ 基于深度学习的算法包括直接回归坐标(Deep Pose)和通过热力图回归坐标(CPM, Hourlgass) 目前单人姿态估计,主流算法是基于Hourlgass各种更改结构的算法. 多人姿态估计 二维图像姿态估计基于CNN的多人姿态估计方法,通常有2个思路(Bottom-Up Appro…
0 - ABSTRACT 许多计算机任务在缺少上下文信息的情况下的处理会更加困难.例如,在多相机跟踪任务下,行人可能在不同照相机下面因为有这不同的姿势和灯光条件而看起来很不一样.类似地,在低分辨率高角度监控视频中,头部方向评估也是一个挑战.如果没有上下文信息,人们在处理此类任务时会有很大麻烦.在我们的工作中,我们将上下文信息.社会群体信息和两个重要的计算机视觉任务:多目标跟踪和监控视频的头部姿态和方向评估进行结合.这三部分都采用一个概率公式进行建模并且我们提出了有效的解决方案.在多相机跟踪和头部…
http://blog.csdn.net/zziahgf/article/details/72732220 keywords 人体姿态估计 Human Pose Estimation 给定单张RGB图像,输出人体某些关键点的精确像素位置. 全卷积网络 Stacked Hourglass Networks 多尺度特征 Features processed across all scales 特征用于捕捉人体的空间关系 Capture spatial relationships associated…
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields 是CVPR2017的一篇论文,作者称是世界上第一个基于深度学习的实时多人二维姿态估计. 优酷演示地址:链接 前几天作者公布了windows下的代码,下面来说说如何配置: 英文配置地址可以参考作者的github:https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/inst…
论文概况 论文名:Towards Accurate Multi-person Pose Estimation in the Wild 作者(第一作者)及单位:George Papandreou, 谷歌 发表期刊/会议:CVPR2016 被引次数(截止到发博日期,以谷歌学术为数据来源):52 主要方法 论文实现的是多人的姿态估计,使用的是自顶向下(top-down)的方法,即:先由目标检测方法把人检测出来,然后再进行单人的姿态估计.这篇论文的总体流程是:第一步,使用Faster-RCNN进行人的检…