洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心,处理过重心的所有路径.然而,路径端点在同一子树(即路径实际上并不过重心)的情况会发生重复计数,需要使用类似容斥的方法,不断删去重复计数的部分.• B:采用类似树形背包的思路,遍历子树时,只考虑当前子树和先前处理完的多颗子树之间的路径,以保证路径端点在不同的子树中,防止重复计数,不需要麻烦的容斥.在一…
题目本质: 首先有如下结论: 而通过写一写可以发现: 举例来讲,36及其倍数的数,会被1的倍数加一遍,被4的倍数扣一遍,会被9的倍数扣一遍,而为了最终计数为0,需要再加回来一遍,所以在容斥里面是正号. 对于36有:6 = 2 * 3,mu[6] = 1:而同时对比16有:4 = 2 * 2,mu[4] = 0:9有:3 = emmm,mu[3] = -1. 枚举到2时,2*2的倍数被扣一遍:枚举到3时,3*3的倍数被扣一遍:枚举到4时,因为它最终只需要扣一遍,而现在已经满足了,所以跳过:枚举到6…
看到\( 10^10 \)的范围首先想到二分,然后把问题转化为判断\( [1,n] \)内有多少个是某个质数的平方和的数. 所以应该是加上是一个质数的平方的个数减去是两个质数的平方的个数加上是三个质数的平方的个数--注意到这正好是莫比乌斯函数反过来,所以 \( re-=mb[i]*n/(i*i) \) 即可 #include<iostream> #include<cstdio> using namespace std; const int N=300005; int p[N],to…
题目传送门 跳蚤 题目描述 Z城市居住着很多只跳蚤.在Z城市周六生活频道有一个娱乐节目.一只跳蚤将被请上一个高空钢丝的正中央.钢丝很长,可以看作是无限长.节目主持人会给该跳蚤发一张卡片.卡片上写有N+1个自然数.其中最后一个是M,而前N个数都不超过M,卡片上允许有相同的数字.跳蚤每次可以从卡片上任意选择一个自然数S,然后向左,或向右跳S个单位长度.而他最终的任务是跳到距离他左边一个单位长度的地方,并捡起位于那里的礼物. 比如当N=2,M=18时,持有卡片(10, 15, 18)的跳蚤,就可以完成…
https://www.luogu.org/problemnew/show/P2231 题意相当于:有n个位置a[1..n],每个位置可以填[1,m]中任一个整数,问共有多少种填法满足gcd(a[1],a[2],..,a[n],m)=1 可以反演一下 #include<cstdio> #include<algorithm> #include<cstring> #include<vector> #include<cmath> using names…
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分答案x,问题转化为求[1,x]间有多少个没有完全平方因子的数. 容斥,加上全部,减去一个质数的平方的倍数个数,加上两个质数乘积的平方的倍数个数... 然后发现,每个数的系数就是µ 这也说明了莫比乌斯的原理就是容斥,µ函数就是容斥系数 具体来说,对于每一个i<=sqrt(x),对于ans的贡献就是µ[i]…
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005   洛谷 P1447 https://www.luogu.org/problemnew/show/P1447 首先,题意就是求 ∑(1 <= i <= n) ∑(1 <= j <= m) [ 2 * gcd(i,j) -1 ]: 方法1:容斥原理 枚举每个数作为 gcd 被算了几次: 对于 d ,算的次数 f[d] 就是 n/d 和 m/d 中互质的…
题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显然\(g[i] = 2^{i-1}\)(插板后每空位放不放) 同时还可以枚举一下gcd,设\(f[i]\)表示满足和为\(i\)且所有数的gcd为1的方案,\(g[i] = \sum_{d | i} f[\frac{n}{d}]\) 反演一下,\(f[i] = \sum_{d | i} \mu(d)…
题意:\( g(k) = 2^{f(k)} \) ,求\( \sum_{i = 1}^{n} g(i) \),其中\( f(k)\)代表k的素因子个数. 思路:题目意思很简单,但是着重于推导和简化,这是数论题的一贯思路,其中g(k)的方程可以看出是求k的无平方因子的个数,那么题目就是求1~n的无平方因字数的和了. 首先我们可以从莫比乌斯函数入手. 从\( \mu(d) \)的性质有,当d为素数单次连积时\( \mu(d)=(-1)^k\),其余d不为1时\( \mu(d)=0\) 那么可知\(…
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另外一个公交站往往要换几次车,例如从公交站A到公交站D,你就至少需要换3次车. Tiger的方向感极其糟糕,我们知道从公交站A到公交E只需要换4次车就可以到达,可是tiger却总共换了n次车,注意tiger一旦到达公交站E,他不会愚蠢到再去换车.现在希望你计算一下tiger有多少种可能的乘车方案. 题…