BZOJ2818 Gcd】的更多相关文章

本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转载请注明出处,侵权必究,保留最终解释权! Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 对于样例(2,2),(2,4),…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 其实就是一个转化问题,求gcd(x, y) = k, 1 <= x, y <= n的对数等于求gcd(x, y) = 1, 1 <= x, y <= n/k的对数.那么接下来我们就只要枚举每个素数k=prime[i]了,然后用到欧拉函数就可以求出来了,Σ( 2*Σ(…
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 如果两个数的x,y最大公约数是z,那么x/z,y/z一定是互质的 然后找到所有的素数,然后用欧拉函数求一下前缀和就行 #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; ; const int INF=0x3f3f3…
一通套路之后得到 求出中间那个函数的前缀和的话就可以整除分块了. 暴力求的话复杂度其实很优秀了,大约在n~nlogn之间. 不过可以线性筛做到严格线性.考虑其最小质因子,如果是平方因子那么只有其有贡献,否则由于多了一个质因子,将函数值取反并加上该质因子贡献. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #includ…
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 Solution 看着黄学长的题解才弄懂这道题的QAQ,我数论真的好差啊... 求$gcd(x,y)=p$,p为素数的x,y取值有多少种 每个素数p对答案的贡献是$1$~$n…
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 Source 湖北省队互测 若gcd(a,b)=素数p,则a=px,b=py且gcd(x,y)=1,这样,我们枚举小于n的素数p,对于每个素数p,只需求小于等于n/p的数中互质的数的对…
题面 题意都在题目里面了 题解 你可以把题意看成这个东西 $$ \sum_{i=1}^n\sum_{j=1}^m\mathbf f(gcd(i,j)) $$ 其中$\mathbf f(n)$为$是否是一个质数[n是否是一个质数]$ 然后把$\mathbf f$反演一下,找到一个$\mathbf g$令$\mathbf f=\mathbf 1 \ast \mathbf g$,即: $$ \mathbf g(n)=\sum_{d\mid n}\mu(\frac nd)\cdot \mathbf f(…
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 6826 Solved: 3013 [Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的 数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于样例(2,2),(2,4),(3,3),(4,2) 1…
gcd(x,y)(1<=x,y<=n)为素数(暂且把(x,y)和(y,x)算一种) 的个数 <=> gcd(x/k,y/k)=1,k是x的质因数 的个数 <=> Σφ(x/k) (1<=x<=n,k是x的质因子) 这样的复杂度无法接受, ∴我们可以考虑枚举k,计算Σφ(q/k) (k是n以内的质数,q是n以内k的倍数),即Σ[φ(1)+φ(2)+φ(3)+...+φ(p)] (p=n/k) 介个phi的前缀和可以预处理粗来. 但是(x,y)和(y,x)并不同…
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include<queue> #include<cstdlib> #include<algorithm> #include<vector> #include<cmath> using namespace std; typedef long long LL; ; cons…