Python数据分析(二): Numpy技巧 (4/4)】的更多相关文章

In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  …
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第二部分,剩余两部分会在10.1假期内完成. 下面就是numpy技巧的第二部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是…
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一部分:地址是:http://www.cnblogs.com/cgzl/p/7630065.html 我一共准备了numpy技巧4篇文章,这是第三部分,剩余一部分会在10.1假期内完成. 下面就是numpy技巧的第三部分:由于直接再这里添加jupyter notebook源码的话变形比较厉害,所以还是…
numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   第一部分: http://www.cnblogs.com/cgzl/p/7630065.html 第二部分: http://www.cnblogs.com/cgzl/p/7630972.html 第三部分: http://www.cnblogs.com/cgzl/p/7631471.html 这是最后一部分:由于直…
第一部分: ipython http://www.cnblogs.com/cgzl/p/7623347.html 第二部分: numpy http://www.cnblogs.com/cgzl/p/7630065.html 这里是Pandas的第一部分, 预计Pandas会有很多部分...... html { font-family: sans-serif } body { margin: 0 } article,aside,details,figcaption,figure,footer,he…
Pandas的第一部分: http://www.cnblogs.com/cgzl/p/7681974.html github地址: https://github.com/solenovex/My-Machine-Learning-Notebook 很抱歉, 因为工作繁忙, 更新的比较慢. 数据的选取和索引 Pandas对数据的基本操作…
Python模块中的numpy,这是一个处理数组的强大模块,而该模块也是其他数据分析模块(如pandas和scipy)的核心. 接下面将从这5个方面来介绍numpy模块的内容: 1)数组的创建 2)有关数组的属性和函数 3)数组元素的获取--普通索引.切片.布尔索引和花式索引 4)统计函数与线性代数运算 5)随机数的生成 数组的创建 numpy中使用array()函数创建数组,array的首个参数一定是一个序列,可以是元组也可以是列表. 一维数组的创建 可以使用numpy中的arange()函数…
不一定非得使用Jupyter Notebook,试试ipython命令行 安装 ipython 我只试过Windows 10环境下的. 1.安装python安装包之后,应该就有ipython了. 2.安装anaconda,这个做机器学习或数据分析要是需要的,这个装完之后,也会有ipython.(建议使用anaconda,国内镜像地址:https://mirrors.tuna.tsinghua.edu.cn/) 启动ipython 1.命令行输入ipython即可启动. 2.或者找一下快捷方式,也…
原文:https://www.cnblogs.com/nxld/p/6058572.html https://morvanzhou.github.io/tutorials/data-manipulation/np-pd/2-1-np-attributes/-----Numpy 学习 https://blog.csdn.net/u013457382/article/details/50828646-------python numpy教程 https://www.cnblogs.com/linux…
从头到尾都是手码的,文中的所有示例也都是在Pycharm中运行过的,自己整理笔记的最大好处在于可以按照自己的思路来构建矿建,等到将来在需要的时候能够以最快的速度看懂并应用=_= 注:为方便表述,本章设arr为numpy.ndarray的一个实例化对象 1. NumPy简介 NumPy是python运用于数据分析.科学计算最重要的库之一 由于numpy底层是用C/C++写的,在性能和速度上都有较大的提升,能用NumPy的地方就多用NumPy 官网:www.numpy.org 约定俗成的NumPy模…