CDQ分治与整体二分小结】的更多相关文章

前言 这是一波强行总结. 下面是一波瞎比比. 这几天做了几道CDQ/整体二分,感觉自己做题速度好慢啊. 很多很显然的东西都看不出来 分治分不出来 打不出来 调不对 上午下午晚上的效率完全不一样啊. 完蛋.jpg 绝望.jpg. 关于CDQ分治 CDQ分治,求的是三维偏序问题都知道的. 求法呢,就是在分治外面先把一维变成有序 然后分治下去,左边(l,mid)关于右边(mid+1,r)就不存在某一维的逆序了,所以只有两维偏序了. 这个时候来一波"树状数组求逆序对"的操作搞一下二维偏序 就可…
序言 \(CDQ\) 分治和整体二分都是基于分治的思想,把复杂的问题拆分成许多可以简单求的解子问题.但是这两种算法必须离线处理,不能解决一些强制在线的题目.不过如果题目允许离线的话,这两种算法能把在线解法吊起来打(如树套树). 前置知识:分治 个人觉得分治的经典例子便是归并排序. 大家都知道,归并排序就是每次将区间 \([l,r]\) 拆分成 \([l,mid]\) 和 \([mid+1,r]\),然后再 \(O(n)\) 合并两个有序数组,再将 \([l,r]\) 的答案传到上一层去. 那么我…
 CDQ分治部分 CDQ分治是用分治的方法解决一系列类似偏序问题的分治方法,一般可以用KD-tree.树套树或权值线段树代替. 三维偏序,是一种类似LIS的东西,但是LIS的关键字只有两个,数组下标和权值,三维偏序问题的权值有两个,且必须A[I]<A[J]且B[I]<B[j]. 把这个问题放到平面上,就是一个点在另一个点的左下方. 那么如何求? CDQ分治的主要过程是二分整个区间,把左区间看成产生贡献的区间,于是我们在左区间进行操作,在右区间统计答案,用归并排序的方法求解. 对于这道题,我们二…
cdq分治与整体二分 cdq来源于2008年国家集训队作业陈丹琦(雅礼巨佬),用一个log的代价完成从静态到动态(很多时候是减少时间那一维的). 对于一个时间段[L, R],我们取mid = (L + R) / 2,分治的每层只考虑mid之前的修改对mid之后的查询的贡献,然后递归到[L,mid],(mid,R]. 整体二分就是将所有询问一起二分,然后获得每个询问的答案.CDQ相比整体二分略有不同,整体二分是按照答案进行分治. cdq和整体二分适用范围:处理一些用数据结构(如树套树)做起来非常令…
洛谷 Codeforces 根号分治真是妙啊. 思路 考虑对于单独的一个\(k\)如何计算答案. 与"赛道修建"非常相似,但那题要求边,这题要求点,所以更加简单. 在每一个点贪心地把子树升上来的两条最长的链拼在一起,能组就组,否则把最长链往上送,复杂度\(O(n)\). 那么多个\(k\)怎么办呢? 分析一波,\(k<\sqrt{n}\)时可以暴力计算,而\(k>\sqrt{n}\)时\(ans_k\leq \lfloor \frac{n}{k}\rfloor\),只有\(…
[BZOJ4237]稻草人 Description JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下条件: 田地的形状是边平行于坐标轴的长方形: 左下角和右上角各有一个稻草人: 田地的内部(不包括边界)没有稻草人. 给出每个稻草人的坐标,请你求出有多少遵从启示的田地的个数 Input 第一行一个正整数N,代表稻草人的个数 接下来N行,第i行(1<=i<=N)包…
正题 题目链接:https://loj.ac/problem/2880 题目大意 给出平面上的\(n\)个点,然后求有多少个矩形满足 左下角和右上角各有一个点 矩形之间没有其他点 \(1\leq n\leq 2\times 10^5,1\leq x_i,y_i\leq 10^9,\)保证\(x_i,y_i\)分别不重复出现. 解题思路 按照\(x\)排序,考虑\(CDQ\)分治后左边对右边的影响,对\(y\)从大到小排序然后左右各自维护一个单调栈,左边考虑每个点第一个右上角的点,右边维护一个\(…
题面 给一个 N N N 点 M M M 边的简单无向图,询问 Q Q Q 次,每次问你把编号在 [ l i , r i ] [l_i,r_i] [li​,ri​] 之间的边删掉后,该图是否存在奇数环,即是否不能被二染色. 1 ≤ N , M , Q ≤ 200000 1\leq N,M,Q\leq 200000 1≤N,M,Q≤200000. 题解 看了半天才搞懂官解里的奇怪分治是什么,其实就是整体二分嘛! 部分分就不多赘述了,大概就是一步步引导我们到正解的整体二分+可回退并查集(官解称其为:…
4025: 二分图 Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input 输入数据的第一行是三个整数n,m,T. 第2行到第m+1行,每行4个整数u,v,start,end.第i+1行的四个整数表示第i条边连接u,v两个点,这条边在start时刻出现,在第end时刻消失. Output 输出包含T行.在第i行中,如果第i时间段内这个图是二分图,那么输出…
作为一个永不咕咕咕的博主,我来更笔记辣qaq CDQ分治 CDQ分治的思想还是比较简单的.它的基本流程是: \(1.\)将所有修改操作和查询操作按照时间顺序并在一起,形成一段序列.显然,会影响查询操作结果的修改操作在序列中一定会在这一个查询操作前面 \(2.\)将这一段序列分为左右两半,递归解决左右两半的子问题 \(3.\)考虑左半部分的修改操作对右半部分的查询操作的贡献 CDQ分治的基本思想就是在分治的过程中统计左半部分对右半部分的影响 上面的过程可能比较抽象,举个栗子:归并排序求逆序对 别告…
[题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治解决了t ,树状数组解决了y. 时间复杂度,排序log,分治log,树状数组也是log 分治中加入了树状数组,所以复杂度带两个log 而整体二分完全没有时间的先后,所以只有一个log. CDQ分治,分治的是时间. 整体二分,分治的是答案. 还是很不同的算法. [代码] #include<iostre…
其实我不太清楚这个应该叫CDQ分治还是整体二分 参考:http://blog.csdn.net/lvzelong2014/article/details/78688727 一眼做法是线段树套可持久化trie,但是会MLE+TLE 考虑用CDQ推掉线段树 首先对于没有时间限制的商品建一棵可持久化trie,先更新一遍ans. 然后对于询问和修改分别处理,多记录一维时间,把修改操作按照商店编号排序,对于询问操作的d,改为在时间维度上的一段区间[s,t] 对时间维进行二分,模拟线段树操作. 第一步,对于…
CDQ分治-陌上花开 题目大意 对于给遗传给定的序列: \[ (x,y,z)_1, (x,y,z)_2, (x,y,z)_3, \cdots, (x,y,z)_n \] 求: \[ \sum_{x_i < x_j,~y_i < y_j,~z_i<z_j,~i ≠j}1 \] 题解: CDQ分治,顾名思义就是要进行分治,但是它可以解决比普通分治更多的问题.CDQ分治的整体思想,是: 对于一个需要解决问题的区间\([l,r)\),将其一分为二,变为\([l,mid),[mid,r)\). 对…
目录 小结 CDQ分治 二维LIS 第一道裸题 bzoj1176 Mokia bzoj3262 陌上花开 bzoj 1790 矩形藏宝地 hdu5126四维偏序 P3157 [CQOI2011]动态逆序对 CF 762E CSUSTOJ 1024:CDQ CSUSTOJ 1026:强制在线树套树 整体二分 动态区间第k小 P3332 [ZJOI2013]K大数查询 初学推荐博客:LemonMZc BraketBN Owen_codeisking CDQ&整体二分教程和题目:Winniechen…
整体二分和CDQ分治 有一些问题很多时间都坑在斜率和凸壳上了么--感觉斜率和凸壳各种搞不懂-- 整体二分 整体二分的资料好像不是很多,我在网上找到了一篇不错的资料:       整体二分是个很神的东西,它可以把许多复杂的数据结构题化简.它的精髓在于巧妙地利用了离线的特点,把所有的修改.询问操作整体把握.       先说说第k大数吧,这种问题是整体二分的标志性题目,什么划分树啊,主席树啊,树套树啊见了整体二分都得自叹不如.首先对于一次询问来说我们可以二分答案,然后通过验证比答案大的数有多少个来不…
这点东西前前后后拖了好几个星期才学会……还是自己太菜啊. Cdq分治的思想是:把问题序列分割成左右两个,先单独处理左边,再处理左边对右边的影响,再单独处理右边.这样可以消去数据结构上的一个log,降低编码复杂度. 整体二分:当一个询问的答案满足二分性质时,我们可以按照答案的大小分割整个查询和修改序列.每次把序列分成互不相同的两部分.这样能把数据结构的二分拿出来,降低编码复杂度. 说白了,就是当你懒得写树套树或者惨遭卡内存时候的骗分办法. 好了,上例题吧: BZOJ2683: 二维单点加,矩形查.…
突然诈尸.png 这两个东西好像都是离线骗分大法... 不过其实这两个东西并不是一样的... 虽然代码长得比较像 CDQ分治 基本思想 其实CDQ分治的基本思想挺简单的... 大概思路就是长这样的: 程序得到一个有序的操作/查询序列$[l,r)$ (于是就不能在线了QAQ) 将这些操作分成两部分$[l,mid)$和$[mid,r)$递归下去处理. 显然直接分下去一定还是有序的于是我们不用管它 计算$[l,mid)$中的操作对$[mid,r)$的查询的贡献. 也就是用左半部分的子问题辅助解决右半部…
参考:https://www.luogu.org/blog/Owencodeisking/post-xue-xi-bi-ji-cdq-fen-zhi-hu-zheng-ti-er-fen 前置技能:树状数组,线段树,分治.归并排序 CDQ分治: 据说是OI大佬陈丹琦发明的 1.三维偏序 思路: 第一维排序,第二维分治,第三维树状数组上查询 考虑分治时区间 [l, m] 对区间 [m+1, r] 的贡献,因为第一维已经排好序,所以区间 [l, m] 的第一维小于区间 [m+1, r]的第一维 然后…
题目:单点更新查询区间第k大 按照主席树的思想,要主席树套树状数组.即按照每个节点建立主席树,然后利用树状数组的方法来更新维护前缀和.然而,这样的做法在实际中并不能AC,原因即卡空间. 因此我们采用一种叫做整体二分的方法. 说一下具体做法: 首先要离线处理 我们把原数列也当成单点更新的操作,而更改值我们则看成两个操作,第一个是删掉原来位置的值,第二个是把新的值放置在这个位置,这样一来我们就可以得到最长n*3的操作序列. 然后就是我们的整体二分步骤了,首先我们对答案进行二分,这时我们会获得一个mi…
Part 1:CDQ分治 CDQ分治讲解博客 可以把CDQ分治理解为类似与归并排序求逆序对个数的一种分治算法(至少我现在是这么想的).先处理完左右两边各自对答案的贡献,在处理跨越左右两边的对答案的贡献. 例题: 逆序对(二维偏序) 过水,不讲. 三维偏序 第一维先sort,第二维由归并保证,第三维在归并时查询权值树状数组. \(Code:\) int n, k, tot; struct node{ int a, b, c, w, id; }p[N], tp[N]; int ans[N]; ll…
CDQ分治小结 warning:此文仅用博主复习使用,初学者看的话后果自负.. 复习的时候才发现以前根本就没写过这种东西的总结,简单的扯一扯 cdq分治的经典应用就是解决偏序问题 比如最经典的三维偏序问题 给出\(n\)个数,每个数\(i\),有三个属性\(a_i, b_i, c_i\),现在我们要统计对于每个\(i\),\(a_j \leqslant a_i, b_j \leqslant b_i, c_j \leqslant c_i\)的个数 显然我们可以先把所有数都按\(a_i\)排序一遍,…
In the lattice points of the coordinate line there are n radio stations, the i-th of which is described by three integers: xi — the coordinate of the i-th station on the line, ri — the broadcasting range of the i-th station, fi — the broadcasting fre…
题目传送门 题意:求树上路径可修改的第k大值是多少. 题解:CDQ整体二分+树刨. 每一个位置上的数都会有一段持续区间 根据CDQ拆的思维,可以将这个数拆成出现的时间点和消失的时间点. 然后通过整体二分第k大思路 + 树炮询问路径上出现点的个数就好了. 说一下整体二分的思路. 先假设第k大的值是mid, 然后按照时间顺序,出现一个数<=mid标记这个数的位置为1, 消失一个数<=mid,标记这个数的位置为0. 然后对于询问来说,询问路径上的值, 与 k进行比较, 如果 值 >= k则说明…
LINK:I 君的探险 神仙题! 考虑一个暴力的做法 每次点亮一个点 询问全部点 这样询问次数为 \(\frac{n\cdot (n-1)}{2}\) 可以通过前5个点. 考虑都为A的部分分 发现一个点只会和另外一个点进行连边. 且询问次数要求\(nlogn\) 需要分治 二分等方法. 一个想法是 每次点亮一个再询问全部太浪费了 可以进行分治. 即每次点亮\(\frac{1}{4}\)数量的点 然后观察 如果两个点是一组的那么他们的状态相同 按照状态来划分区域再进行分治下去. 每次可以rand选…
CDQ分治属于比较特殊的一类分治,许多问题转化为这类分治的时候,时空方面都会有很大节省,而且写起来没有这么麻烦. 这类分治的特殊性在于分治的左右两部分的合并,作用两部分在合并的时候作用是不同的,比如,通过左半部分的影响来更新右半部分,所以分治开始前都要按照某一个关键字排序,然后利用这个顺序,考虑一个区间[l, r]的两部分间的影响.感觉说的太多,还是不如具体题目分析,而且题目也不尽相同,记住几句话是没什么用的. 练习地址: http://vjudge.net/contest/view.actio…
cdq分治 是一种特殊的分治 他的思想: 1.分治l,mid 2.分治mid+1,r 3.计算l,mid对mid+1,r的影响 3就是最关键的地方 这也是cdq的关键点 想到了这一步基本就可以做了 接下来简单介绍关于维数不同的偏序该采用什么策略.一维:这个其实不能叫做偏序,一维是全序的,这种情况只要直接排序就可以解决,当然使用数组结构也可以.二维:先对第一维排序,然后第二维可以用cdq分治,也可以使用数据结构维护.三维:同上,第一维要排序,然后可以两重cdq分治,cdq分治+数据结构,线段树或树…
题意:对于一个序列,假如说一个区间内最多能包含 $k$ 个不同的数,那么这个序列最少会被划分成几个区间 $?$ 输出 $k$ 为 $1\sim n$ 的答案. 我们每次选区间一定是贪心地将这个区间选地越大越好. 这道题有一个非常显然的主席树做法:从后向前扫,维护每一种数字出现最靠左位置,然后用主席树维护这些关键位置. 假设当前跳到点 $k$,那么如果要查 $k$ 能跳到的下一个点的话在线段树上二分即可. 由于 $k$ 是由 $1\sim n$ ,所以整个暴力跳的复杂度大概是 $O(10\time…
链接:https://nanti.jisuanke.com/t/11217 奉上官方题解: 枚举 d(x , y , z) 中的 y,把 y 从这个图中删去,再求这时的全源最短路即可,使用 Floyd 算法来做上述过程. Floyd 算法可以是一个增量的过程,虽然第一维一般都是从 1枚举到 k但是这个枚举的顺序并不影响最后的结果. 所以如果可以预处理出对于每个点 y,只剩 y 没有在 Floyd 的第一维枚举到的矩阵,这个矩阵的值就是不经过 y 点的全源最短路. 所以使用分治,每一次把点集拆成两…
[题目] Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. Input 第一行N,M接下来M行,每行形如1 a b c或2 a b c Output 输出每个询问的结果 Sample Input 2 5 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 3 Sample Output 1 2 1 HI…
模板题,折腾了许久. cqd分治整体二分,感觉像是把询问分到答案上. #include <bits/stdc++.h> #define rep(i, a, b) for (int i = a; i <= b; i++) #define drep(i, a, b) for (int i = a; i >= b; i--) #define REP(i, a, b) for (int i = a; i < b; i++) #define pb push_back #define m…