Deep Learning 近年来在各个领域都取得了 state-of-the-art 的效果,对于原始未加工且单独不可解释的特征尤为有效,传统的方法依赖手工选取特征,而 Neural Network 可以进行学习,通过层次结构学习到更利于任务的特征.得益于近年来互联网充足的数据,计算机硬件的发展以及大规模并行化的普及.本文主要简单回顾一下 MLP ,也即为Full-connection Neural Network ,网络结构如下,分为输入,隐层与输出层,除了输入层外,其余的每层激活函数均采用…
深度|神经网络和深度学习简史(第一部分):从感知机到BP算法 2016-01-23 机器之心 来自Andrey Kurenkov 作者:Andrey Kurenkov 机器之心编译出品 参与:chenxiaoqing.范娜Fiona.杨超.微胖.汪汪.赵巍 导读:这是<神经网络和深度学习简史>第一部分.这一部分,我们会介绍1958年感知机神经网络的诞生,70年代人工智能寒冬以及1986年BP算法让神经网络再度流行起来. 深度学习掀起海啸 如今,深度学习浪潮拍打计算机语言的海岸已有好几年,但是,…
Alink漫谈(十五) :多层感知机 之 迭代优化 目录 Alink漫谈(十五) :多层感知机 之 迭代优化 0x00 摘要 0x01 前文回顾 1.1 基本概念 1.2 误差反向传播算法 1.3 总体逻辑 0x02 训练神经网络 2.1 初始化模型 2.2 压缩数据 2.3 生成优化目标函数 2.4 生成目标函数中的拓扑模型 2.4.1 AffineLayerModel 2.4.2 FuntionalLayerModel 2.4.3 SoftmaxLayerModelWithCrossEntr…
首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于等于1)+输出层)时,我们称之为多层人工神经网络. 1.神经单元的选择 那么我们应该使用什么样的感知器来作为神经网络节点呢?在上一篇文章我们介绍过感知器算法,但是直接使用的话会存在以下问题: 1)感知器训练法则中的输出 由于sign函数时非连续函数,这使得它不可微,因而不能使用上面的梯度下降算法来最…
想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学.并记录下来,其中会有很多摘抄. (一)什么是多层感知器和反向传播 1,单个神经元 神经网络的基本单元就是神经元,一个神经元就是处理输入并输出的小玩意,下面是一个图   , 可以看到每一个输入都有自己的权重,权重和输入的值相乘,然后加上一个偏置b之后在经过一个函数f得到输出y,这个f就是激活函数,激活函数的作用是将非线性引入神经元的输出.因为大多数现实世界的数据都是非线性的,我们希望神经元能够学习非线性的函…
来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classifying MNIST digits using Logistic Regression.(http://blog.csdn.net/shouhuxianjian/article/details/46375461).另外,它使用新的theano函数和概念: T.tanh, shared variab…
BPN(Back Propagation Net) 反向传播神经网络是对非线性可微分函数进行权值训练的多层网络,是前向神经网络的一种. BP网络主要用于: 1)函数逼近与预测分析:用输入矢量和相应的输出矢量训练一个网络,逼近一个函数或预测未知信息: 2)模式识别:用一个特定的输出矢量将它与输入矢量联系起来: 3)分类:把输入矢量以所定义的合适方式进行分类: 4)数据压缩:减少输出矢量维数以便于传输与存储. 比如,一个三层BPN结构如下: 由输入层.隐含层和输出层三层组成.其中每一层的单元与之相邻…
一.简介 机器学习分为很多个领域,其中的连接主义指的就是以神经元(neuron)为基本结构的各式各样的神经网络,规范的定义是:由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界的刺激作出的交互反应.而我们在机器学习中广泛提及的神经网络学习就是机器学习与神经网络的交叉部分,本篇就将介绍基本的神经元模型.感知机模型的知识以及更进一步的多层感知机的具体应用(注意,本篇介绍的内容只是当下流行的深度学习的铺垫,因此只使用了无GPU加速的相应模块,关于深度学习的知识.当下…
Alink漫谈(十四) :多层感知机 之 总体架构 目录 Alink漫谈(十四) :多层感知机 之 总体架构 0x00 摘要 0x01 背景概念 1.1 前馈神经网络 1.2 反向传播 1.3 代价函数 1.4 优化过程 1.4.1 迭代法 1.4.2 梯度下降 1.5 相关公式 1.5.1 加权求和 h 1.5.2 神经元输出值 a 1.5.3 输出层的输出值 y 1.5.4 激活函数g(h) 1.5.5 损失函数E 1.5.6 误差反向传播--更新权重 1.5.7 输出层增量项 δo 1.5…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
BP算法从原理到实践 反向传播算法Backpropagation的python实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 博主接触深度学习已经一段时间,近期在与别人进行讨论时,发现自己对于反向传播算法理解的并不是十分的透彻,现在想通过这篇博文缕清一下思路.自身才疏学浅欢迎各位批评指正. 参考文献 李宏毅深度学习视频 The original location of the code 关于反向传播算法的用途在此不再赘述,这篇博文主要是理解形象化理解反向传播算法与python进行实…
1.引言 一个多层感知机(Multi-Layer Perceptron,MLP)可以看做是,在逻辑回归分类器的中间加了非线性转换的隐层,这种转换把数据映射到一个线性可分的空间.一个单隐层的MLP就可以达到全局最优. 2.模型 一个单隐层的MLP可以表示如下: 一个隐层的MLP是一个函数:$f:R^{D}\rightarrow R^{L}$,其中 $D$ 是输入向量 $x$ 的大小,$L$是输出向量 $f(x)$ 的大小: $f(x)=G(b^{(2)}+W^{(2)}(s(b^{(1)}+W^{…
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数组成的链:\(f_3(f_2(f_1))\),$f_1$为网络第一层,叫输入层.$f_2$为第二层,依次类推,中间层叫做隐藏层.最后一层为输出层.链的全长称为模型的深度. 每个隐藏层都有张量值,这些隐藏层的维数为模型的宽度. 概念 解释 输入层 网络的第一层 隐藏层 网络的中间N层 输出层 网络的最…
0. 前言 之前上模式识别课程的时候,老师也讲过 MLP 的 BP 算法, 但是 ppt 过得太快,只有一个大概印象.后来课下自己也尝试看了一下 stanford deep learning 的 wiki, 还是感觉似懂非懂,不能形成一个直观的思路.趁着这个机会,我再次 revisit 一下.本文旨在说明对 BP 算法的直观印象,以便迅速写出代码,具体偏理论的链式法则可以参考我的下一篇博客(都是图片,没有公式). 1. LMS 算法 故事可以从线性 model 说起(顺带复习一下)-在线性 mo…
前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只是机器学习的一分支领域,它更强调从连续的层中进行学习,这种层级结构中的每一层代表不同程序的抽象,层级越高,抽象程度越大.这些层主要通过神经网络的模型学习得到的,最大的模型会有上百层之多.而最简单的神经网络分为输入层,中间层(中间层往往会包含多个隐藏层),输出层.下面几篇文章将分别从前馈神经网络 FNN.卷积神…
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \mathcal{X}\)表示实例的特征向量,对应于输入空间的点:输出\(y\in \mathcal{Y}\)表示实例的类别.有输入空间到输出空间的如下函数: \[\begin{aligned} f(x)= g(\textbf{w}\cdot \textbf{x}+b) \end{aligned} \…
前言:这只是我的一个学习笔记,里边肯定有不少错误,还希望有大神能帮帮找找,由于是从小白的视角来看问题的,所以对于初学者或多或少会有点帮助吧. 1:人工全连接神经网络和BP算法 <1>:人工神经网络结构与人工神经网络可以完美分割任意数据的原理: 本节图片来源于斯坦福Andrew Ng老师coursea课件(此大神不多介绍,大家都懂) 在说明神经网络之前,先介绍一下神经网络的基础计算单元,感知器. 上图就是一个简单的感知器,蓝色是输入的样本,g(z)是激活函数,z=x1*w1+-,a=g(z) 这…
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inputs. ----cs231n 2.what problems to slove? 2.1introduction 神经网络的本质是一个多层的复合函数,图: 表达式为: 上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b.…
1986年Rumelhart和McCelland在<并行分布式处理>中提出了BP算法,即非线性连续变换函数的多层感知器网络误差反向传播算法. 该算法的思想是:学习过程分为信号的正向传播与误差的反向传播两个过程. 正向传播时,输入样本从输入层传入,经各隐含层逐层处理后传向输出层,若输出层的实际输出与期望输出不符,则转入误差反向传播阶段. 误差反传是将输出误差以某种形式通过隐含层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层的误差信号,此信号即作为修正各单元权值的依据. 上述两个过程…
在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练.在众多的训练算法中,其中最杰出的代表就是BP算法,它是至今最成功的神经网络学习算法.在实际任务中,大部分都是使用的BP算法来进行网络训练的.值得一提的是,BP算法不仅适用于多层前馈网络,对于其他类型的神经网络,例如:训练卷积神经网络和递归神经网络. 由于推导过程太多公式,因而我使用的word的截图.(推导过程参考的是周志华老师的<机器学习>(西瓜书…
目录 1. 需要的微积分知识 1.1 导数 1.2 求导的链式法则 2. 梯度下降法 2.1 梯度 2.2 梯度算法的解释 3.误差反向传播算法 3.1 理论推导 3.1.1 符号说明 3.1.2 推导过程 3.2 BP算法的小结 3.3 Python实现 3.3.1 最简单三层网络 3.4 附录: 1. 需要的微积分知识 1.1 导数 对于一元函数,在导数存在的情况下,在某一点的导数,也就是该点的斜率. 对于多元函数,对于某一点求导,则需要指明方向,两个特殊的方向,1. 偏导:在坐标轴方向的导…
前言 多层网络的训练需要一种强大的学习算法,其中BP(errorBackPropagation)算法就是成功的代表,它是迄今最成功的神经网络学习算法. 今天就来探讨下BP算法的原理以及公式推导吧. 神经网络 先来简单介绍一下神经网络,引入基本的计算公式,方便后面推导使用 图1 神经网络神经元模型 图1就是一个标准的M-P神经元模型. [神经元工作流程] 每个神经元接受n个(图1中只有3个)来自其他神经元或者直接输入的输入信号(图1中分别为x0,x1,x2),这些输入信号分别与每条“神经”的权重相…
转载请注明出处:http://www.cnblogs.com/xbinworld/p/4265530.html 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法——反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Tr…
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的来说是很受用的.全书一共有30篇论文,本书期望里面的文章随着时间能成为经典,不过正如bengio(超级大神)说的“the wisdom distilled here should be taken as a guideline, to be tried and challenged, not as a pra…
BP算法在minist上的简单实现 数据:http://yann.lecun.com/exdb/mnist/ 参考:blog,blog2,blog3,tensorflow 推导:http://www.cnblogs.com/yueshangzuo/p/8025157.html 基本实现 import struct import random import numpy as np from math import sqrt class Data: def __init__(self): print…
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介. 经详细注释的代码:放在我的github地址上,可下载. 一.多层感知机(MLP)原理简介 多层感知机(MLP,Multilayer Perceptron)也叫人工神经网络(ANN,Artificial Neural Network),除了输入输出层,它中间可以有多个隐层,…
BP算法是神经网络的基础,也是最重要的部分.由于误差反向传播的过程中,可能会出现梯度消失或者爆炸,所以需要调整损失函数.在LSTM中,通过sigmoid来实现三个门来解决记忆问题,用tensorflow实现的过程中,需要进行梯度修剪操作,以防止梯度爆炸.RNN的BPTT算法同样存在着这样的问题,所以步数超过5步以后,记忆效果大大下降.LSTM的效果能够支持到30多步数,太长了也不行.如果要求更长的记忆,或者考虑更多的上下文,可以把多个句子的LSTM输出组合起来作为另一个LSTM的输入.下面上传用…
1 自动编码机简介        传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征.        深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖.深度学习在早起甚至被认为是一种无监督的特征学习,模仿了人脑的对特征逐层抽象提取的过程.这其中有两点比较重要:一是无监…
@author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43221829 转载:http://blog.csdn.net/u012162613/article/details/43221829 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参考本文第一部分的算法简介.…
多层感知机(multi perceptron,MLP).对于普通的含隐藏层的感知机,由于其全连接层只是对数据做了仿射变换,而多个仿射变换的叠加仍然是一个仿射变换,即使添加更多的隐藏层,这种设计也只能与仅含输出层的单层神经网络等价.解决问题的一个方法是引入非线性变换,对隐藏变量使用非线性变化,然后作为下一个全连接层的输入,这个非线性函数被称为激活函数. 激活函数主要有ReLu.Sigmoid.tanh.其中ReLu计算简单,且不像其他两个哪个容易造成梯度消失,使用较多. 多层感知机pytorch实…