旅行计划-DAG上最长路】的更多相关文章

http://www.luogu.org/problem/show?pid=1137 题目描述 小明要去一个国家旅游.这个国家有N个城市,编号为1-N,并且有M条道路连接着,小明准备从其中一个城市出发,并只往东走到城市i停止. 所以他就需要选择最先到达的城市,并制定一条路线以城市i为终点,使得线路上除了第一个城市,每个城市都在路线前一个城市东面,并且满足这个前提下还希望游览的城市尽量多. 现在,你只知道每一条道路所连接的两个城市的相对位置关系,但并不知道所有城市具体的位置.现在对于所有的i,都需…
传送门 A. Reposts time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output One day Polycarp published a funny picture in a social network making a poll about the color of his handle. Many of his friend…
春训团队赛第四场 ID A B C D E F G H I J K L M AC O O O O O O O O O 补题 ? ? O O 传送门 题目链接(CF Gym102021) 题解链接(pdf) 代码 & 简易题解 [A]:LCA 给定一个格状迷宫,保证任意点均可达,且任意两格点间有且仅有一条简单路径. 给定一组移动序列,求按照这个序列走的累计路程. 按照题意对图预处理,得到一棵树,对于每对询问求 \(\text{LCA}\) 的同时求距离,累加即为答案. 一开始 \(\text{RE…
题意:升序的给出一本若干个单词,每个单词都可删除一个字母,添加一个字母或者改变一个字母,如果任意一个操作以后能变成另外一个字典中的单词,那么就连一条有向边,求最长的长度. 分析:DAG的最长路和最短路在算法竞赛入门里边原原本本有的,结果我现在忘记了,,真是太弱了..方法就是,用map对应键值(以建图),然后删除操作和修改操作可以看做同一个操作,之后每个操作都是在相应的位置添加一个 '*' 就可以了.想说的有两点,一个是为什么删除和修改可以看做一个操作,其实删除这个操作根本就是多余的,因为一个单词…
http://acm.sdut.edu.cn:8080/vjudge/contest/view.action?cid=158#problem/F 大致题意:给出n个人和m种关系(ti,si),表示ti的年龄不小于si.问最小能被划分为几个集合.每一个集合都要满足里面的人都无法比較. 思路:对于一条路上的点.它们必然不能被划分到同一个集合中,因此原题变为求一条最长路. 而题目中有可能出现环.因此,先tarjan缩点转化为DAG,而缩点后的每一个点的点权便是该节点中包括的点的个数.然后记忆化求最长路…
题目地址:https://www.luogu.com.cn/problem/P3627 第一次寒假训练的结测题,思路本身不难,但对于我这个码力蒟蒻来说实现难度不小-考试时肛了将近两个半小时才刚肛出来.我也是吐了 题面 Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri 的酒吧也都设在路口,虽然并不是每个路口都设有酒吧. Banditji 计划实施 Siruseri 有史以…
有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.很多问题都可以转化为DAG上的最长路.最短路或路径计数问题. 一.DAG模型 [嵌套矩形问题] 问题:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽.矩形X(a , b)可以嵌套在矩形Y(c , d)中当且仅当a<c,b<d,或者b<c,a<d(相当于把矩形X旋转90°).例如(1,5)可以嵌套在(6, 2)内,但不能嵌套在(3, 4)内.你的任务是选出尽可能多的矩形排…
题意: 一张由 n 个点,m 条边构成的有向无环图.每个点有点权 Ai.QQ 小方想知道所有起点为 1 ,终点为 n 的路径中最大的中位数是多少. 一条路径的中位数指的是:一条路径有 n 个点,将这 n 个点的权值从小到大排序后,排在位置 ⌊n2⌋+1 上的权值. 思路(官方题解): 考虑二分答案,我们需要验证路径最大的中位数是否 ≥mid . 我们把所有的点权做 −1/1 变换,即 ≥mid 的点权变为 1 ,否则变为 −1 . 根据题面路径中位数的定义,我们可以发现,如果这条路径的中位数 ≥…
在有向无环图上的动态规划是学习动态规划的基础,很多问题都可以转化为DAG上的最长路,最短路或路径计数问题 9.2.1 DAG模型 嵌套矩形问题: 矩形之间的可嵌套关系是一种典型的二元关系,二元关系可以用图来建模.如果矩形X可以嵌套在矩形Y里面,就从X到Y有一条有向边.这个有向图是无环的,因为一个矩形无法直接或间接地嵌套在自己内部(严格嵌套地时候,注意该种关系,这是保证前驱结点不影响后继节点的关键,否则记忆化搜索很容易出现错误) 换句话说,他是一个DAG,这样,所要求的便是DAG上的最长路径 硬币…
本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这道题是很经典的DAG上的最长路问题,用dp[ i ]表示以i为出发点的最长路的长度,因为每一步都只能走向他的相邻点,则 d[ i ]  = max(d[ j ] + 1)这里 j 是任意一个面积比 i 小的举行的编号. 下面的代码中附带了最小字典序最长路打印的问题,我们找到第一个路径最长的 i,往后…