七.(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\),  \(A^{-1}BA\) 均为对角阵的充分必要条件是 \(A=P_1P_2\cdots P_r\), 其中 \(P_i\) 均为第一类初等阵 (即对换 \(I_n\) 的某两行) 或第二类初等阵 (即非零常数乘以 \(I_n\) 的某一行). 证明  充分性通过简单验证即可证明. 现证必要性, 设 \(A=(a_{ij})_{n\times n}\),…
七.(本题10分)  设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ker}\varphi\cap\mathrm{Im}\psi=0$ 的充要条件是 $r(\varphi)=r(\psi)$. 证明  我们给出六种不同的证法, 括号内是证明思想的关键词. 几何证法1 (和空间与直和)  由 $\varphi(I_V-\psi)=0$ 可知, 对任意的 $\alpha\i…
七.(本题10分)  设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充要条件是存在 $m$ 阶方阵 $P$, 使得 $B=PA$ 或 $A=PB$. 证法一  由 $A'B+B'A=0$ 可得 $$(A+B)'(A+B)=A'A+B'B.$$ 设 $V_A\subseteq\mathbb{R}^n$ 为线性方程组 $Ax=0$ 的解空间, $V_B$ 和 $V_{A+…
七.(本题10分)  设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义集合 \(R_S=\{(a_1,a_2,\cdots,a_m)\in\mathbb{K}^m\,|\,a_1v_1+a_2v_2+\cdots+a_mv_m=0\}\). 再取 \(V\) 中的向量组 \(T=\{u_1,u_2,\cdots,u_m\}\). 证明: (1) \(R_S\) 是 \…
八.(本题10分)  设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析  证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩阵理论中常见的技巧; 第二步, 利用半正定阵的三个重要性质 (参考新白皮书的例 8.43.例 8.44 和例 8.45) 来构造合适的相似变换. 以下两种证法分别利用了半正定阵的第一个和第三个重要性质, 其难易度大致相当, 但第三个性质显然更强有力一些. 证明  设 $C$ 为非异实矩阵, 使得 $…
六.(本题10分)  设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))=1$, 证明: 存在 $n$ 阶复方阵 $B$, 使得 $g(B)=A$. 证明  设 $P$ 为非异阵, 使得 $$P^{-1}AP=J=\mathrm{diag}\{J_{r_1}(\lambda_1),\cdots,J_{r_k}(\lambda_k)\}$$ 为 Jordan 标准型, 我们…
八.(本题10分)  设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots)$ 称为 $\varphi$ 关于 $V$ 中向量 $\alpha$ 的循环子空间. 若非零多项式 $f(x)\in K[x]$ 满足 $f(\varphi)(\alpha)=0$, 则称 $f(x)$ 是 $\varphi$…
六.(本题10分)  设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\varphi(X)=AXB$. 证明: $\varphi$ 是幂零线性变换 (存在正整数 $k$, 使得 $\varphi^k=0$) 的充要条件为 $A,B$ 中至少有一个是幂零阵. 充分性  不妨设 $A$ 为幂零阵, 即存在正整数 $k$, 使得 $A^k=0$, 则 $\varphi^k(X…
六.(本题10分)  设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)=n$. 证法一 (从 $A$ 出发)  由于问题的条件和结论在同时正交相似下不改变, 故不妨从一开始就假设 $A$ 是正交相似标准型 $\begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix}$, 其中 $\Lambda=\mathrm{diag}\…
六.(本题10分)   设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明  由 $A$ 是幂零阵可知, $A$ 的特征值全为零. 设 $P$ 为非异阵, 使得 $$P^{-1}AP=J=\mathrm{diag}\{J_{r_1}(0),J_{r_2}(0),\cdots,J_{r_k}(0)\}$$ 为 Jordan 标准型. 下面通过三段论法来证明本题的结论. Step 1$-$对 Jordan 块 $…
六.(本题10分)  设 $A$ 为 $n$ 阶实对称阵, 证明: $A$ 有 $n$ 个不同的特征值当且仅当对 $A$ 的任一特征值 $\lambda_0$ 及对应的特征向量 $\alpha$, 矩阵 $\begin{pmatrix} A-\lambda_0I_n & \alpha \\ \alpha' & 0 \\ \end{pmatrix}$ 均非异. 证明  以下分别给出 4 种不同的证明. 证法 1 (实对称阵的正交相似标准型)  由实对称阵的正交相似标准型理论可知, 存在正交阵…
一.期末考试成绩90分以上的同学(共21人) 周烁星(99).封清(99).叶雨阳(97).周子翔(96).王捷翔(96).张思哲(95).丁思成(94).陈宇杰(94).谢永乐(93).张哲维(93).陈钦品(93).邹年轶(92).顾天翊(91).吴润华(91).黄泽松(91).刘羽(91).范辰健(90).金维涵(90).黄永晟(90).张俊杰(90).时天宇(90) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次(因调休安排,2018年11月12日和2018年11…
一.期末考试成绩班级前十名 宁盛臻(100).朱民哲(92).徐钰伦(86).范凌虎(85).沈伊南(84).何陶然(84).丁知愚(83).焦思邈(83).董瀚泽(82).钱信(81) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及人数 最终成绩 人数 A 25 A- 10 B+ 35 B 16 B- 16 C+ 6 C 5 C- 2…
一.期末考试成绩班级前几名 胡晓波(93).宋沛颖(92).张舒帆(91).姚人天(90).曾奕博(90).杨彦婷(90).白睿(88).唐指朝(87).谢灵尧(87).蔡雪(87) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及其人数 成绩 人数 A 31 A- 3 B+ 37 B 25 B- 6 C+ 6 C 3 C- 0 D 0…
一.期末考试成绩班级前十名 郭宇城(100).魏一鸣(93).乔嘉玮(92).刘宇其(90).朱柏青(90).王成文健(90).方博越(88).熊子恺(88).张君格(88).崔镇涛(87).史书珣(87).张雷(87).詹远瞩(87) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业14次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*15%+期中考试成绩*15%+期末考试成绩*70% 三.最终成绩及人数 最终成绩 人数 A 28 A- 3 B+ 29…
一.期末考试成绩班级前几名 金羽佳(92).包振航(91).陈品翰(91).孙浩然(90).李卓凡(85).张钧瑞(84).郭昱君(84).董麒麟(84).张诚纯(84).叶瑜(84) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业12次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及其人数 成绩 人数 A 21 A- 5 B+ 25 B 20 B- 9 C+ 2 C 1 C- 2 D 0…
一.期末考试成绩班级前十名 张菲诺(95).刘宇其(95).魏一鸣(93).郭宇城(92).程梓兼(91).葛珈玮(90).汪子怡(90).余张伟(90).张昰昊(89).朱柏青(89) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业14次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*15%+期中考试成绩*15%+期末考试成绩*70% 三.最终成绩及人数 最终成绩 人数 A 29 A- 2 B+ 22 B 13 B- 11 C+ 8 C 4 C- 3…
一.期末考试成绩班级前十名 丁思成(99).周烁星(97).王捷翔(96).顾文颢(92).顾天翊(90).封清(89).张思哲(89).李哲蔚(88).陈钦品(88).邹年轶(88).王祝斌(88) 二.总评成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总评成绩=平时成绩*15%+期中成绩*15%+期末成绩*70% 三.最终成绩及人数 最终成绩 人数 A 30 A- 6 B+ 28 B 22 B- 13 C+ 9 C 3…
一.期末考试成绩班级前十五名 林晨(93).朱民哲(92).何陶然(91).徐钰伦(91).吴嘉诚(91).于鸿宝(91).宁盛臻(90).杨锦文(89).占文韬(88).章俊鑫(87).颜匡萱(87).王旭磊(87).王泽斌(87).沈伊南(86).李飞虎(86) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业13次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*15%+期中考试成绩*15%+期末考试成绩*70% 三.最终成绩及人数 最终成绩 人数 A…
一.期末考试成绩班级前几名 胡晓波(90).杨彦婷(88).宋卓卿(85).唐指朝(84).陈建兵(83).宋沛颖(82).王昊越(81).白睿(80).韩沅伯(80).王艺楷(80).张漠林(80).张子涵(80) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业12次,10次以上(包括10次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及人数 最终成绩 人数 A 26 A- 1 B+ 14 B 16 B- 20…
一.期末考试成绩班级前几名 钱列(100).王华(92).李笑尘(92).金羽佳(91).李卓凡(91).包振航(91).董麒麟(90).张钧瑞(90).陆毕晨(90).刘杰(90).黄成晗(90).潘仁杰(90).孙浩然(90).赵小茜(90).叶瑜(90) 二.总成绩计算方法 平时成绩根据交作业的次数决定,本学期共交作业10次,8次以上(包括8次)100分,少一次扣10分. 总成绩=平时成绩*20%+期中考试成绩*20%+期末考试成绩*60% 三.最终成绩及其人数 成绩 人数 A 23 A-…
目录 Magic-Towers 一.团队名称.团队成员介绍.任务分配 团队名称:MoTa 团队成员介绍 任务分配 二.项目简介 三.项目采用技术 四.项目亮点 主界面显示主要信息功能 游戏动画 五.项目关键代码 数据I/O流功能 游戏动作监听器功能(部分) 门及怪物的动画消失代码 六.项目git地址及个人博客地址   git地址   聪灵博客地址   梦冰博客地址   景晖博客地址 七.项目git提交记录截图(要体现出每个人的提交记录.提交说明) 八.项目Issue记录截图 九.项目功能架构图与…
目录 Magic-Towers 一.团队课程设计博客链接   [团队博客地址](https://www.cnblogs.com/lmb171004/p/10271667.html 二.个人负责模块或任务说明 三.自己的代码提交记录截图 四.课程设计感想 Magic-Towers 一.团队课程设计博客链接   [团队博客地址](https://www.cnblogs.com/lmb171004/p/10271667.html ) 二.个人负责模块或任务说明 任务分配  网络1713兰景晖 --Vi…
注意事项: *考试时间:2014年11月20日 第5.6节. *在计算机D盘,新建目录.并命名"学号+姓名".如:(称为考生目录.下同).考试中全部文件必须保存在此目录下. *启动Myeclipse(获取注冊码),新建web project.并以你的学号命名.保存在考生文件夹中. *程序设计中所使用的jar包,请在此处下载. *全部题目的截屏(按下键盘Print Screen,粘在绘图板中)图片保存格式为:*.png.保存位置在考生文件夹中. 一.UML建模题(选做题,共20分,请任选…
[问题2014S06]  试用有理标准型理论证明13级高等代数I期末考试最后一题: 设 \(V\) 为数域 \(K\) 上的 \(n\) 维线性空间,  \(\varphi\) 为 \(V\) 上的线性变换, 且存在非零向量 \(\alpha\in V\) 使得 \[V=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots).\] 设 \(f(x)\) 是 \(\varphi\) 的特征多项式, 并且 \(f(x)\) 在数域 \(K\) 上至少有两…
问题2014S01  设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) 达到最大值或最小值的点的集合, 即 \(S=\{(b_1,b_2,\cdots,b_n)\in\mathbb{R}^n\,|\) \(f(x_1,x_2,\cdots,x_n)\leq\)\(f(b_1,b_2,\cdots,b_n)\), \(\forall\,(x_1,x_2,\cdots,x_…
[问题2014S12]  设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB\) 的所有特征值都是正实数. [公告]  关于本学期复旦高等代数II(13级)每周一题,新题的公布到第十五教学周为止(即本学期一共公布 15 道思考题), 解答的公布到第十七教学周为止(通常滞后两周). [推荐]  请 13 级的同学到以下网址下载<数学之美,吴军著>一书,希望即将学完一年大学数…
周末一直沉浸在醉意中,为婚礼忙忙碌碌了一个月,终于完成了人生一大喜事. 清晨仍旧有一些宿醉得感觉, 看到来自微软的邮件,获得Microsoft Client Development MVP 2013 - 2014, 彻底从醉意中清醒. 对于我来说,2013年太多值得记忆的事情!决定记下,留给将来的自己.…
MyEclipse 试用期限一般是三十天,过了三十天后 MyEclipse 会提示用户注册而不能正常使用,这里分享一下破解过程,仅供学习和参考. MyEclipse 10, 2013, 2014 破解过程都是一致的,破解软件也是一致的, 破解软件下载地址:http://download.csdn.net/detail/qq_34979213/9648578 破解步骤: 1.下载软件压缩包,解压,双击 run.bat 或者 creaker.jar (必须先配置好JDK才能使用) 2.输入 User…
[问题2014S03]  设 \(A\in M_n(\mathbb R)\) 是非异阵并且 \(A\) 的 \(n\) 个特征值都是实数. 若 \(A\) 的所有 \(n-1\) 阶主子式之和等于零, 证明: 存在 \(A\) 的一个 \(n-2\) 阶主子式, 其符号与 \(|A|\) 的符号相反. 注  上述问题略微推广了13级缪欣晨同学问我的一道考研试题.…