Sobel算子 (转)】的更多相关文章

在上篇文章中我们了解了PlateLocate的过程中的所有步骤.在本篇文章中我们对前3个步骤,分别是高斯模糊.灰度化和Sobel算子进行分析. 一.高斯模糊 1.目标 对图像去噪,为边缘检测算法做准备. 2.效果 在我们的车牌定位中的第一步就是高斯模糊处理. 图1 高斯模糊效果 3.理论 详细说明可以看这篇:阮一峰讲高斯模糊. 高斯模糊是非常有名的一种图像处理技术.顾名思义,其一般应用是将图像变得模糊,但同时高斯模糊也应用在图像的预处理阶段.理解高斯模糊前,先看一下平均模糊算法.平均模糊的算法非…
1. 形式 Gy 上下颠倒的 (*A表示卷积图像,忽略先): 看得出来,sobel算子感觉并不统一,特别是方向,我们知道matlab的图像格式是,x轴从左到右,y轴从上到下,原点在左上角. 所以,第二种sobel算子更和我们的心意. 2.计算: 在计算时,图像经过处理得到梯度图像,像素的灰度值公式是 , 人们为了方便改为 , 如果G的值大于某阈值,可以认为这个点就是边缘像素点. 梯度的方向是 所以,我们通过将横纵两个方向的sobel算子对图像处理之后,得到图像的梯度图像,图像的灰度是梯度的幅值,…
sobel算子原理及opencv源码实现 简要描述 sobel算子主要用于获得数字图像的一阶梯度,常见的应用和物理意义是边缘检测. 原理 算子使用两个33的矩阵(图1)算子使用两个33的矩阵(图1)去和原始图片作卷积,分别得到横向G(x)和纵向G(y)的梯度值,如果梯度值大于某一个阈值,则认为该点为边缘点 图1:卷积矩阵 图2:卷积运算 事实上卷积矩阵也可以由两个一维矩阵卷积而成,在opencv源码中就是用两个一维矩阵卷积生成一个卷积矩阵: 图3:由两个一维矩阵卷积生成的矩阵 static vo…
#1,个人理解 网上查了很多资料,都说sobel算子是用来检测边缘的,分别给了两个方向上的卷积核,然后说明做法,就说这就是sobel算子.对于我个人来说,还有很多不明白的地方,所以理清下思路. #2,边缘.边界和sobel算子 这个可以自己去google或者百度找定义,边缘和边界不一样,两者没有必然联系也并非毫无联系.因为现实世界的三维空间映射到图像显示的二维空间中会丢失很多信息,也会添进来一部分类似光照.场景等的干扰,所以并不能完全给边缘和边界的关系下一个定义.对图像而言,我们一般是要找出它的…
彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨论卷积在数字图像处理中的应用. 在数字图像处理中, 有一种基本的处理方法:线性滤波. 待处理的平面数字图像可被看做一个大矩阵, 图像的每个像素对应着矩阵的每个元素, 假设我们平面的分辨率是 1024*768, 那么对应的大矩阵的行数= 1024, 列数=768. 用于滤波的是一个滤波器小矩阵(也叫卷…
边缘是图像最基本的特征,其在计算机视觉.图像分析等应用中起着重要的作用,这是因为图像的边缘包含了用于识别的有用信息,是图像分析和模式识别的主要特征提取手段. 1.何为“图像边缘”? 在图像中,“边缘”指的是临界的意思.一幅图像的“临界”表示为图像上亮度显著变化的地方,边缘指的是一个区域的结束,也是另一个区域的开始.“边缘点”指的是图像中具有坐标[x,y],且处在强度显著变化的位置上的点. 2.如何表示边缘检测? 在数学上,用导数来表示改变的快慢.基于此,有许多方法用于边缘检测,他们绝大部分可以划…
幻灯片1 Sobel算子 幻灯片2 一.Sobel边缘检测算子 l 在讨论边缘算子之前,首先给出一些术语的定义: l (1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像. l (2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点. l (3)边缘段:对应于边缘点坐标[x,y]及其方位 ,边缘的方位可能是梯度角. 幻灯片3 二.Sobel算子的基本原理 l Sobel算子是一阶导数的边缘检测算子,在算法实现过程中,通过3×3模…
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们将一起学习Ope…
本来想说很多目前对于 Sobel 算子的认识,但最终还是觉得对于其掌握程度太低,没有一个系统的理解,远不足以写博客,但为了12月不至于零输出,还是决定把自己学习过程中找到的相关资料进行分享. 等到一月底时间充裕的时候再来完成本文. 资料: https://www.cnblogs.com/freeblues/p/5738987.html ——彻底理解数字图像处理中的卷积 - 以 Sobel 算子为例 http://blog.sciencenet.cn/blog-425437-776050.html…
一.简介 sobel算子主要是用于获得数字图像的一阶梯度,常见的应用是边缘检测. Ⅰ.水平变化: 将 I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Ⅱ.垂直变化: 将: I 与一个奇数大小的内核进行卷积.比如,当内核大小为3时, 的计算结果为: Opencv中Sobel函数使用扩展的Sobel算子,来计算一阶.二阶.三阶或混合图像差分. CV_EXPORTS_W , , int borderType=BORDER_DEFAULT ); 第一个参数,InputArra…