首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001]
】的更多相关文章
[Papers]NSE, $u$, Lorentz space [Sohr, JEE, 2001]
$$\bex \bbu\in L^{p,r}(0,T;L^{q,\infty}(\bbR^3)),\quad\frac{2}{p}+\frac{3}{q}=1,\quad 3<q<\infty,\quad 2<p<r<\infty, \eex$$ or $$\bex \sen{\bbu}_{L^{p,\infty}(0,T;L^{q,\infty}(\bbR^3))}\leq \ve,\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q&l…
[Papers]NSE, $u$, Lorentz space [Bosia-Pata-Robinson, JMFM, 2014]
$$\bex \bbu\in L^p(0,T;L^{q,\infty}),\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q\leq\infty. \eex$$ or $$\bex \sen{\bbu}_{L^{p,\infty}(0,T;L^{q,\infty})}\leq \ve,\quad \frac{2}{p}+\frac{3}{q}=1,\quad 3<q\leq \infty \eex$$…
[Papers]NSE, $u$, Lorentz space [Bjorland-Vasseur, JMFM, 2011]
$$\bex \int_0^T\frac{\sen{\bbu}_{L^{q,\infty}}^p}{\ve+\ln \sex{e+\sen{\bbu}_{L^\infty}}}\rd s<\infty. \eex$$…
[Papers]NSE, $\pi$, Lorentz space [Suzuki, NA, 2012]
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad 3< q<\infty. \eex$$ 这篇文章有错误...可惜了. 暂时无法修正.…
[Papers]NSE, $\pi$, Lorentz space [Suzuki, JMFM, 2012]
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad \frac{5}{2}\leq q\leq 3. \eex$$ $$\bex \sen{\n \pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} \leq \ve_*, \eex$$ with $$\bex \frac…
[Papers]MHD, $\pi$, Lorentz space [Suzuki, DCDSA, 2011]
$$\bex \sen{\pi}_{L^{s,\infty}(0,T;L^{q,\infty}(\bbR^3))} +\sen{{\bf b}}_{L^{\gamma,\infty}(0,T;L^{\tt,\infty}(\bbR^3))}^2\leq \ve_*, \eex$$ with $$\bex \frac{2}{s}+\frac{3}{q}=2,\quad \frac{5}{2}\leq q\leq 3; \eex$$ $$\bex \frac{2}{\gamma}+\frac{3}{…
[Papers]NSE, $u_3$, Lebesgue space [Jia-Zhou, NARWA, 2014]
$$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$…
[Papers]NSE, $u_3$, Lebesgue space [Zhou-Pokorny, Nonlinearity, 2009]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \frac{10}{3}<q\leq\infty. \eex$$…
[Papers]NSE, $u_3$, Lebesgue space [Cao-Titi, IUMJ, 2008]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{2}{3}+\frac{2}{3q},\quad \frac{7}{2}<q\leq \infty. \eex$$…
[Papers]NSE, $u_3$, Lebesgue space [Kukavica-Ziane, Nonlinearity, 2006]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{5}{8},\quad \frac{24}{5}<q\leq \infty. \eex$$…