SparkSQL之数据源】的更多相关文章

一.sparksql读取数据源的过程 1.spark目前支持读取jdbc,hive,text,orc等类型的数据,如果要想支持hbase或者其他数据源,就必须自定义 2.读取过程 (1)sparksql进行 session.read.text()或者 session.read .format("text") .options(Map("a"->"b")).load("") read.方法:创建DataFrameReade…
准备json文件: cat /root/1.json {"name":"Michael"} {"name":"Andy", "age":30} {"name":"Justin", "age":19} 可以尝试传统方法: val people = sqlContext.read.json("file:///root/1.json"…
一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JDBC/ODBC connections Plain-text files 注:以下所有测试文件均可从本仓库的resources 目录进行下载 1.2 读数据格式 所有读取 API 遵循以下调用格式: // 格式 DataFrameReader.format(...).option("key"…
用的本地模式,pom.xml中添加了mysql驱动包,mysql已经开启,写入的时候发现用format("jdbc").save()的方式发现会有does not allow create table as select的异常,于是去官方文档上发现了使用jdbc()的方式,测试 正常,说明下Properties是java.util.Properties java public class Demo { private static SparkSession session = Spar…
一.前述       1.SparkSQL介绍 Hive是Shark的前身,Shark是SparkSQL的前身,SparkSQL产生的根本原因是其完全脱离了Hive的限制. SparkSQL支持查询原生的RDD. RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础. 能够在Scala中写SQL语句.支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用.     2.Spark on Hive和Hive on Spa…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.SharkShark是基于Spark计算框架之上且兼容Hive语法的SQL执行引擎,由于底层的计算采用了Spark,性能比MapReduce的Hive普遍快2倍以上,当数据全部load在内存的话,将快10倍以上,因此Shark可以作为交互式查询应用服务来使用.除了基于Spark的特性外…
建议参考SparkSQL官方文档:http://spark.apache.org/docs/latest/sql-programming-guide.html 一.前述       1.SparkSQL介绍 Hive是Shark的前身,Shark是SparkSQL的前身,SparkSQL产生的根本原因是其完全脱离了Hive的限制. SparkSQL支持查询原生的RDD. RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础. 能够在Scala中写SQL语句.支持简单…
一.前述       1.SparkSQL介绍 Hive是Shark的前身,Shark是SparkSQL的前身,SparkSQL产生的根本原因是其完全脱离了Hive的限制. SparkSQL支持查询原生的RDD. RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础. 能够在Scala中写SQL语句.支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用.     2.Spark on Hive和Hive on Spa…
Shark Shark是基于Spark计算框架之上且兼容Hive语法的SQL执行引擎,由于底层的计算采用了Spark,性能比MapReduce的Hive普遍快2倍以上,当数据全部load在内存的话,将快10倍以上,因此Shark可以作为交互式查询应用服务来使用.除了基于Spark的特性外,Shark是完全兼容Hive的语法,表结构以及UDF函数等,已有的HiveSql可以直接进行迁移至Shark上Shark底层依赖于Hive的解析器,查询优化器,但正是由于SHark的整体设计架构对Hive的依赖…
Spark SQL 简介 SparkSQL 的前身是 Shark, SparkSQL 产生的根本原因是其完全脱离了 Hive 的限制.(Shark 底层依赖于 Hive 的解析器, 查询优化器) SparkSQL 支持查询原生的 RDD. 能够在 scala/java 中写 SQL 语句. 支持简单的 SQL 语法检查, 能够在 Scala 中 写Hive 语句访问 Hive 数据, 并将结果取回作为RDD使用 Spark on Hive 和 Hive on Spark Spark on Hiv…