poj 1095 Trees Made to Order 卡特兰数】的更多相关文章

这题用到了卡特兰数,详情见:http://www.cnblogs.com/jackge/archive/2013/05/19/3086519.html 解体思路详见:http://blog.csdn.net/lvlu911/article/details/5425974 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include<iomanip> #include<cm…
题目链接 中间计算的各种细节.有的细节没处理好,就wa了...主要思路就是根据卡特兰数列的: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2) #include <cstdio> #include <string> #include <cstring> #include <queue> #include <map> #include <iostream> #inclu…
http://poj.org/problem?id=1095 先求出n个节点数的二叉树的形态有多少种.卡特兰数f[n]=f[n-1]*(4*n-2)/(n+1);再递归求. #include <cstdio> #include <cstring> #include <algorithm> #define ll long long #define maxn 200 using namespace std; ll f[maxn]; int n,m; void inti()…
题目来源:Trees Made to Order 题目大意:根据下面的规则给一棵二叉树编号: 规则1:如果二叉树为空,则编号为0: 规则2:如果二叉树只有一个节点,则编号为1: 规则3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编号: 规则4:如果一棵含有m个节点的二叉树(左子树为L,右子树为R)的编号为n,要想其它含有m个节点的二叉树的编号如果大于n,则需要满足两个条件中的任意一个:1.左子树的编号大于L的编号:2.左子树的编号等于L的编号,但是右子树的编号大于R的编号.…
Trees Made to Order Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7155   Accepted: 4094 Description We can number binary trees using the following scheme: The empty tree is numbered 0. The single-node tree is numbered 1. All binary tre…
卡特兰数源于组合数学,ACM中比较具体的使用例子有,1括号匹配的种数.2在栈中的自然数出栈的种数.3求多边形内三角形的个数.4,n个数围城圆圈,找不相交线段的个数.5给定n个数,求组成二叉树的种数…… 此题就是第4个样例,是裸卡特兰数,但是这里牵扯的大数,可以使用java的大数类解决,但是我这里使用高精度乘法和除法模拟的(主要是java不会). 此处的递推式为H[1] = 1:H[n] = H[n-1]*(4*n-2)/(n+1){n>=2}:代码如下: 需要注意输出的形式,我这里的进制是100…
题目 题意:给出一个二叉树的编号,问形态. 编号依据 1:如果二叉树为空,则编号为0: 2:如果二叉树只有一个节点,则编号为1: 3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编号: 4:如果一棵含有m个节点的二叉树(左子树为L,右子树为R)的编号为n,要想其它含有m个节点的二叉树的编号如果大于n,则需要满足两个条件中的任意一个:1.左子树的编号大于L的左子树的编号等于L的编号,但是右子树的编号大于R的编号.(大概就是先将右子树的个数填满将变幻完后再将右子树的点向左子树转移…
题目链接:UVa 10007 题意:统计n个节点的二叉树的个数 1个节点形成的二叉树的形状个数为:1 2个节点形成的二叉树的形状个数为:2 3个节点形成的二叉树的形状个数为:5 4个节点形成的二叉树的形状个数为:14 5个节点形成的二叉树的形状个数为:42 把n个节点对号入座有n!种情况 所以有n个节点的形成的二叉树的总数是:卡特兰数F[n]*n! 程序: import java.math.BigInteger; import java.util.Scanner; public class Ma…
题目 题意:给你一个数字n,问你将1~n这n个数字,可以组成多少棵不同的二叉搜索树. 1,2,5,14--根据输出中的规律可以看出这是一个卡特兰数的序列.于是代用卡特兰数中的一个递推式: 因为输入可取到100,用无符号位计算最高可计算33个卡特兰数,所以可以用java中的大数 import java.math.BigInteger; import java.util.Scanner; public class Main { public static void main(String[] arg…
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列. 以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名,其前几项为(从第零项开始) : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 656412042…