首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
《大数据技术应用与原理》第二版-第二章大数据处理架构Hadoop
】的更多相关文章
大数据技术之HBase原理与实战归纳分享-上
@ 目录 概述 定义 特点 数据模型 概述 逻辑结构 物理存储结构 数据模型 应用场景 基础架构 安装 前置条件 部署 启动服务 高可用 Shell操作 基础操作 命令空间 DDL DML 概述 定义 HBase 官网地址 https://hbase.apache.org/ HBase 官网文档 https://hbase.apache.org/book.html HBase GitHub源码地址 https://github.com/apache/hbase Apache HBase是以HDF…
《大数据技术应用与原理》第二版-第三章分布式文件系统HDFS
3.1分布式文件 HDFS默认一个块的大小是64MB,与普通文件不同的是如果一个文件小于数据块的大小,它并不占用整个数据块的存储空间. 主节点又叫名称节点:另一个叫从节点又叫数据节点.名称节点负责文件和目录的创建.删除和重命名,同时管理数据节点和文件块的映射关系.数据节点负责数据存储和读取. 3.2HDFS的相关概念 MapReduce中的map一次只处理一个块中的数据.HDFS抽象块的概念可以带来一下好处: 支持大规模文件存储 简化系统 适合数据备份 名称节点在启动过程中处于安全模式,只对外提…
《大数据技术应用与原理》第二版-第二章大数据处理架构Hadoop
2.1概述 Hadoop是Apache旗下的开源分布式计算平台,是基于Java开发的,具有很好的跨平台特性,其中核心文件是MapReduce和HDFS,而HDFS是根据谷歌文件系统GFS开源实现,是面向普通硬件环境的分布式文件系统,具有很好的容错性和很高的读写速度.MapReduce是根据谷歌的MapReduce开源实现的,允许用户在不了解分布式系统底层实现原理的情况下进行并行程序开发. 分布式存储.分布式处理 高可靠性.高效性.高扩展性.高容错性.成本低.运行在Linux上.支持多种编程语言开…
大数据技术之HBase原理与实战归纳分享-中
@ 目录 底层原理 Master架构 RegionServer架构 Region/Store/StoreFile/Hfile之间的关系 写流程 写缓存刷写 读流程 文件合并 分区 JAVA API编程 准备 示例 底层原理 Master架构 Meta 表格介绍:全称 hbase:meta,只是在 list 命令中被过滤掉了,本质上和 HBase 的其他表格一样,不要去改这个表. RowKey:([table],[region start key],[region id]) 即 表名,region…
大数据技术之HBase原理与实战归纳分享-下
@ 目录 整合Phoenix 定义 为何要使用 安装 SHELL操作 表的映射 简易JDBC示例 二级索引 二级索引配置文件 全局索引 包含索引 本地索引(local index) HBase与 Hive 的集成 使用场景 集成方法 示例 整合已有HBase表示例 整合Phoenix 定义 Phoenix 官网地址 https://phoenix.apache.org/ Phoenix作为一款OLTP和Apache Hadoop的操作分析,是面向HBase的开源 SQL 皮肤,其通过 JDBC…
大数据技术 vs 数据库一体机[转]
http://blog.sina.com.cn/s/blog_7ca5799101013dtb.html 目前,虽然大数据与数据库一体机都很火热,但相当一部分人却无法对深入了解这两者的本质区别.这里便对大数据技术(如Hadoop等,主要指MapReduce与NoSQL)与数据库一体机(新一代的主流关系数据库)技术对比如下: 硬件架构 从本质上来讲,两者的硬件架构基本相同,都是采用x86服务器集群的分布式并行模式来应对大规模的数据与计算.但是,数据库一体机的商家大都会对硬件体系进行面向产品化的.系…
【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…
大数据技术之HBase
第1章 HBase简介 1.1 什么是HBase HBase的原型是Google的BigTable论文,受到了该论文思想的启发,目前作为Hadoop的子项目来开发维护,用于支持结构化的数据存储. 官方网站:http://hbase.apache.org -- 2006年Google发表BigTable白皮书 -- 2006年开始开发HBase -- 2008年北京成功开奥运会,程序员默默地将HBase弄成了Hadoop的子项目 -- 2010年HBase成为Apache顶级项目 -- 现在很多公…
大数据技术Hadoop入门理论系列之一----hadoop生态圈介绍
Technorati 标记: hadoop,生态圈,ecosystem,yarn,spark,入门 1. hadoop 生态概况 Hadoop是一个由Apache基金会所开发的分布式系统基础架构. 用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. 具有可靠.高效.可伸缩的特点. Hadoop的核心是YARN,HDFS和Mapreduce 下图是hadoop生态系统,集成spark生态圈.在未来一段时间内,hadoop将于spark共存,hadoop与…
大数据技术之Hadoop入门
第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…