地铁修建   试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n号枢纽间修建一条地铁. 地铁由很多段隧道组成,每段隧道连接两个交通枢纽.经过勘探,有m段隧道作为候选,两个交通枢纽之间最多只有一条候选的隧道,没有隧道两端连接着同一个交通枢纽. 现在有n家隧道施工的公司,每段候选的隧道只能由一个公司施工,每家公司施工需要的天数一致.而每家公司最多只…
问题描述 试题编号: 201703-4 试题名称: 地铁修建 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 A市有n个交通枢纽,其中1号和n号非常重要,为了加强运输能力,A市决定在1号到n号枢纽间修建一条地铁. 地铁由很多段隧道组成,每段隧道连接两个交通枢纽.经过勘探,有m段隧道作为候选,两个交通枢纽之间最多只有一条候选的隧道,没有隧道两端连接着同一个交通枢纽. 现在有n家隧道施工的公司,每段候选的隧道只能由一个公司施工,每家公司施工需要的天数一致.而每家公司最多只能修…
苗条的生成树 紫书P358 这题最后坑了我20分钟,怎么想都对了啊,为什么就wa了呢,最后才发现,是并查集的编号搞错了. 题目编号从1开始,我并查集编号从0开始 = = 图论这种题真的要记住啊!!题目大部分都是从1开始编号,而代码大部分是从0开始编号,所以要把输入减减. [题目链接]苗条的生成树 [题目类型]最小生成树+并查集 &题解: 如果你看懂了Kruskal算法,那么这个也就很好懂了. 首先按边排序,之后找个连续的区间[L,R] 判断是否已经是生成树,如果是,更新答案就好. 判断是否为生成…
适合对并查集有一定理解的人.  新手可能看不懂吧.... 并查集简单点说就是将相关的2个数字联系起来 比如 房子                      1   2    3   4  5   6 能通向的房子        2   3    4  5  6    1 主要 建立并查集的 函数结构 模板(一般不变除非加权--最好能理解) for(int i=0;i<n;i++)         flag[i]=i;               //标记数组初始化以方便寻根 1 int find…
Description 给定一个n个点.m条边的带权无向图,其中有s个点是加油站. 每辆车都有一个油量上限b,即每次行走距离不能超过b,但在加油站可以补满. q次询问,每次给出x,y,b,表示出发点是x,终点是y,油量上限为b,且保证x点和y点都是加油站,请回答能否从x走到y. Input 第一行包含三个正整数n,s,m(2<=s<=n<=200000,1<=m<=200000),表示点数.加油站数和边数. 第二行包含s个互不相同的正整数c[1],c[2],...cs,表示每…
读题两小时系列-- 在读懂题意之后,发现M(c)就是c这块最大权割边也就是的最小生成树的最大权边的权值,所以整个问题都可以在MST的过程中解决(M和c都是跟着并查集变的) 不过不是真的最小生成树,是合并了所有a[i].w<=min(b[zhao(f[a[i].u])]+z[c[zhao(f[a[i].u])]],b[zhao(f[a[i].v])]+z[c[zhao(f[a[i].v])]])的边的若干联通块,根据定义那样的边不能连在两块之间,一定需要放在一个块里,然后每次合并的时候更新M和c即…
Travel Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 1852    Accepted Submission(s): 641 Problem Description Jack likes to travel around the world, but he doesn't like to wait. Now, he is t…
题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=51276 具体题意不描述了,一眼看过去就是并查集,关键是添加边以后更新答案.我是开个二维的数组ans记录答案,vector容器存储直接或间接相连的点(包括本身). 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <vector> using namespace s…
分析(引入Q神题解  %%%Q) 如果使用可持久化并查集,二分答案判定连通性,复杂度是O(mlog3n),不能在时限内出解.考虑到并查集实际上是一棵树,可以尝试在边上维护一些信息,假设t时刻加了一条边(u,v),若u和v此时未连通,则在root(u)和root(v)之间连一条权值为t的边,表示u所在集合以及v所在集合在t时刻连通,这样对于一组查询(u,v),如果u和v位于同一个连通块内,只需找出并查集中u到v的路径上的权值最大值,很显然这样是不能路径压缩的,但是可以按秩合并保证树高是O(logn…
显然可以用可持久化并查集实现.考虑更简单的做法.如果没有撤销操作,用带撤销并查集暴力模拟即可,复杂度显然可以均摊.加上撤销操作,删除操作的复杂度不再能均摊,但注意到我们在删除时就可以知道他会不会被撤销,所以遇到一个要被撤销的删除操作时,直接求出去掉k条边后的MST即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #…