\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理:\(a^b\equiv a^{b\%\varphi(p)+\varphi(p)}(mod\ p)\) (a为任意整数,b,p为正整数,且\(b>\varphi(p)\)(a,p不一定要互质).证明. 指数是无穷的,但是模数是有限的,从不断减小p去考虑. 设\(f(p)=2^{2^{2^{...}}…