一.概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序.通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变(broadcast variable)和累加器(accumulator) 二.广播变量broadcast variable 2.1 为什么…
概述 在spark程序中,当一个传递给Spark操作(例如map和reduce)的函数在远程节点上面运行时,Spark操作实际上操作的是这个函数所用变量的一个独立副本.这些变量会被复制到每台机器上,并且这些变量在远程机器上的所有更新都不会传递回驱动程序.通常跨任务的读写变量是低效的,但是,Spark还是为两种常见的使用模式提供了两种有限的共享变量:广播变量(broadcast variable)和累加器(accumulator) 广播变量broadcast variable 为什么要将变量定义成…
一. 广播变量 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副本.Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销. Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开.Spark自动地广播每个步骤每个任务需要的通用数据.这些广播数据被序列化地缓存,在运行任务之前被反序列化出来.这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式…
Spark中的Broadcast处理 首先先来看一看broadcast的使用代码: val values = List[Int](1,2,3) val broadcastValues = sparkContext.broadcast(values) rdd.mapPartitions(iter => { broadcastValues.getValue.foreach(println) }) 在上面的代码中,首先生成了一个集合变量,把这个变量通过sparkContext的broadcast函数进…
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 1.广播变量 广播变量理解图 注意事项 1.能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的.可以将RDD的结果广播出去. 2. 广播变量只能在Driver端定义,不能在Executor端定义. 3. 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量…
转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与累加器(accumulator) 累加器用来对信息进行聚合,而广播变量用来高效分发较大的对象. 共享变量出现的原因: 通常在向 Spark 传递函数时,比如使用 map() 函数或者用 filter() 传条件时,可以使用驱动器程序中定义的变量,但是集群中运行的每个任务都会得到这些变量的一份新的副本…
直接上代码:包含了,map,filter,persist,mapPartitions等函数 String master = "spark://192.168.2.279:7077"; // jsc = getContext("local[2]"); jsc = getContext(master); sqlContext = new SQLContext(jsc); connectionProperties = new Properties(); connectio…
package com.gm.hive.SparkHive; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Collection; import java.util.Date; import java.util.HashMap; import java.util.List; import java.util.Map; import java.util.Properties; import…
有人问我,如果让我设计广播变量该怎么设计,我想了想说,为啥不用zookeeper呢? 对啊,为啥不用zookeeper,也许spark的最初设计哲学就是尽量不使用别的组件,他有自己分布式内存文件系统,有自己的任务调度(standalone),有自己的sql解析.好吧这也是我喜欢他的地方,一栈式解决方案.…
Broadcast 广播变量:可以理解为是一个公共的共享变量,我们可以把一个dataset 或者不变的缓存对象(例如map list集合对象等)数据集广播出去,然后不同的任务在节点上都能够获取到,并在每个节点上只会存在一份,而不是在每个并发线程中存在.如果不使用broadcast,则在每个节点中的每个任务中都需要拷贝一份dataset数据集,比较浪费内存(也就是一个节点中可能会存在多份dataset数据). import org.apache.flink.api.common.functions…