GMM的EM算法】的更多相关文章

GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
GMM与EM算法的Python实现 高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计. 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型. GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考虑到了协方差.和K-means一样,我们需要提前确定簇的个数. GMM的基本假设为数据是由几个不同的高…
机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定义和实现 3.2 测试 4. EM算法 1. GMM模型 ​ 聚类问题是一个经典的无监督任务,其目标是将 \(N\) 个 \(D\) 维数据 \(\{\bf{x}_i\}_{i=1}^N\) 分成\(K\)个簇,使得每个簇中的样本尽可能相似.GMM算法对数据分布做了一些假设: 第\(k\)个簇数据点…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率密度函…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明. 本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每一个 GMM 由 K 个 Gaussian 分布组成.每一个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率…
用EM算法估计GMM模型参数 参考  西瓜书 再看下算法流程…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和GMM模型进行了介绍,本文我们通过对GMM增加一个惩罚项. 2. 不带惩罚项的GMM 原始的GMM的密度函数是 \[ p(\boldsymbol{x}|\boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma})=\sum_{k=1}^K\pi_k\ma…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分别从数学基础.EM通用算法原理.EM的高斯混合模型的角度介绍了EM算法.按照惯例,本文要对EM算法进行更进一步的探究.就是动手去实践她. 2. GMM实现 我的实现逻辑基本按照GMM算法流程中的方式实现.需要全部可运行代码,请移步我的github. 输入:观测数据\(x_1,x_2,x…
1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在机器学习.计算机视觉等领域有着广泛的应用.其典型的应用有概率密度估计.背景建模.聚类等. 2. GMM介绍 高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布…