kafka---broker 保存消息】的更多相关文章

消息队列的好处: 消息队列(Message Queue) 消息: 网络中的两台计算机或者两个通讯设备之间传递的数据.例如说:文本.音乐.视频等内容. 队列:一种特殊的线性表(数据元素首尾相接),特殊之处在于只允许在首部删除元素和在尾部追加元素.入队.出队. 消息队列:顾名思义,消息+队列,保存消息的队列.消息的传输过程中的容器:主要提供生产.消费接口供外部调用做数据的存储和获取. 消息队列分类 MQ分类:点对点(P2P).发布订阅(Pub/Sub) 共同点:消息生产者生产消息发送到queue中,…
首先看一下 KafkaServer 这个类的声明: Represents the lifecycle of a single Kafka broker. Handles all functionality required to start up and shutdown a single Kafka node. 代表了单个 broker 的生命周期,处理所有功能性的请求,以及startup 和shutdown 一个broker node. 在这个类的startup中,有一个线程池被实例化了:…
Kafka 0.11版本增加了很多新功能,包括支持事务.精确一次处理语义和幂等producer等,而实现这些新功能的前提就是要提供支持这些功能的新版本消息格式,同时也要维护与老版本的兼容性.本文将详细探讨Kafka 0.11新版本消息格式的设计,其中会着重比较新旧两版本消息格式在设计上的异同.毕竟只有深入理解了Kafka的消息设计,我们才能更好地学习Kafka所提供的各种功能.      1. Kafka消息层次设计 不管是0.11版本还是之前的版本,Kafka的消息层次都是分为两层:消息集合(…
首先需要思考下边几个问题: 消息丢失是什么造成的,从生产端和消费端两个角度来考虑 消息重复是什么造成的,从生产端和消费端两个角度来考虑 如何保证消息有序 如果保证消息不重不漏,损失的是什么 大概总结下 消费端重复消费:建立去重表 消费端丢失数据:关闭自动提交offset,处理完之后受到移位 生产端重复发送:这个不重要,消费端消费之前从去重表中判重就可以 生产端丢失数据:这个是最麻烦的情况 解决策略: 1.异步方式缓冲区满了,就阻塞在那,等着缓冲区可用,不能清空缓冲区 2.发送消息之后回调函数,发…
转载自 huxihx,原文链接 [原创]Kafka 0.11消息设计 目录 一.Kafka消息层次设计 1. v1格式 2. v2格式 二.v1消息格式 三.v2消息格式 四.测试对比 Kafka 0.11版本增加了很多新功能,包括支持事务.精确一次处理语义和幂等producer等,而实现这些新功能的前提就是要提供支持这些功能的新版本消息格式,同时也要维护与老版本的兼容性.本文将详细探讨Kafka 0.11新版本消息格式的设计,其中会着重比较新旧两版本消息格式在设计上的异同.毕竟只有深入理解了K…
在server.properties文件中配置: 1.broker.id kafka集群是由多个节点组成的,每个节点称为一个broker,中文翻译是代理.每个broker都有一个不同的brokerId,由broker.id指定,是一个不小于0的整数,各brokerId必须不同,但不必连续.如果我们想扩展kafka集群,只需引入新节点,分配一个不同的broker.id即可. 启动kafka集群时,每一个broker都会实例化并启动一个kafkaController,并将该broker的broker…
在很多的流处理框架的介绍中,都会说kafka是一个可靠的数据源,并且推荐使用Kafka当作数据源来进行使用.这是因为与其他消息引擎系统相比,kafka提供了可靠的数据保存及备份机制.并且通过消费者位移这一概念,可以让消费者在因某些原因宕机而重启后,可以轻易得回到宕机前的位置. 但其实kafka的可靠性也只能说是相对的,在整条数据链条中,总有可以让数据出现丢失的情况,今天就来讨论如何避免kafka数据丢失,以及实现精确一致处理的语义. kafka无消息丢失处理 在讨论如何实现kafka无消息丢失的…
Kafka概述 Apache Kafka由Scala和Java编写,基于生产者和消费者模型作为开源的分布式发布订阅消息系统.它提供了类似于JMS的特性,但设计上又有很大区别,它不是JMS规范的实现,如Kafka允许多个消费者主动拉取数据,而在JMS中只有点对点模式消费者才会主动拉取数据. Kafka对消息保存时根据topic进行归类,发送消息者称为producer,消息接收者称为consumer.Kafka集群由多个Kafka实例组成,每个实例称为broker.并且Kafka集群基于zookee…
消息队列常见问题处理 分布式事务 什么是分布式事务 常见的分布式事务解决方案 基于 MQ 实现的分布式事务 本地消息表-最终一致性 MQ事务-最终一致性 RocketMQ中如何处理事务 Kafka中如何处理事务 RabbitMQ中的事务 消息防丢失 生产阶段防止消息丢失 RabbitMQ 中的防丢失措施 Kafka 中的防丢失措施 RocketMQ 中的防丢失措施 存储阶段 RabbitMQ 中的防丢失措施 Kafka 中的防丢失措施 RocketMQ 中的防丢失措施 消费阶段 消息重复发送 参…
1 .存储方式 物理上把 topic 分成一个或多个 patition(对应 server.properties 中的 num.partitions=3 配置),每个 patition 物理上对应一个文件夹(该文件夹存储该 patition 的所有消息和索引文件),如下: 图.4 2 .存储策略 无论消息是否被消费,kafka 都会保留所有消息.有两种策略可以删除旧数据: 1. 基于时间:log.retention.hours=168 2. 基于大小:log.retention.bytes=10…
1.消费端弄丢了数据 唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你还没处理,你自己就挂了,此时这条消息就丢咯. 这不是跟 RabbitMQ 差不多吗,大家都知道 Kafka 会自动提交 offset,那么只要关闭自动提交 offset,在处理完之后自己手动提交 offset,就可以保证数据不会丢.但是此时确实还是可能会有重复消费,比如你刚处理完,还没提交 offs…
Apache Kafka是大量使用磁盘和页缓存(page cache)的,特别是对page cache的应用被视为是Kafka实现高吞吐量的重要因素之一.实际场景中用户调整page cache的手段并不太多,更多的还是通过管理好broker端的IO来间接影响page cache从而实现高吞吐量.我们今天就来讨论一下broker端的各种IO操作. 开始之前,还是简单介绍一下page cache:page cache是内核使用的最主要的磁盘缓存(disk cache)之一——实际上Linux中还有其…
Kafka与常见消息队列的对比 RabbitMQ Erlang编写 支持很多的协议:AMQP,XMPP, SMTP, STOMP 非常重量级,更适合于企业级的开发 发送给客户端时先在中心队列排队.对路由,负载均衡或者数据持久化都有很好的支持. Redis 基于Key-Value对的NoSQL数据库 入队时,当数据比较小时Redis的性能要高于RabbitMQ,而如果数据大小超过了10K,Redis则慢的无法忍受: 出队时,无论数据大小,Redis都表现出非常好的性能,而RabbitMQ的出队性能…
Kafka 单节点多Kafka Broker集群 接前一篇文章,今天搭建一下单节点多Kafka Broker集群环境. 配置与启动服务 由于是在一个节点上启动多个 Kafka Broker实例,所以我们需要使用不同的端口来实现. $ cp config/server.properties config/server-1.properties $ cp config/server.properties config/server-2.properties 修改 config/server-1.pr…
下载与安装 从 http://www.apache.org/dist/kafka/ 下载最新版本的 kafka,这里使用的是 kafka_2.12-0.10.2.1.tgz $ tar zxvf kafka_2.12-0.10.2.1.tgz $ cd kafka_2.12-0.10.2.1 运行 启动 zookeeper 服务 $ bin/zookeeper-server-start.sh config/zookeeper.properties 启动 kafka Broker 服务 $ bin…
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章,将offset存储到Redis,既保证了并发也保证了数据不丢失,经过测试,有效. 二.使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Dire…
最近开发一cdc框架,为了测试极端情况,需要kafka传递100万条数据过去,1个G左右,由于其他环节限制,不便进行拆包(注:测下来,大包走kafka不一定性能更好,甚至可能更低). 测试百万以上的变更数据时,报消息超过kafka broker允许的最大值,因此需要修改如下参数,保证包能够正常发送: socket.request.max.bytes=2147483647    # 设置了socket server接收的最大请求大小log.segment.bytes=2147483647     …
1.目标 在这个Apache Kafka教程中,我们将学习Kafka Broker.Kafka Broker管理主题中的消息存储.如果Apache Kafka有多个代理,那就是我们所说的Kafka集群.此外,在本Kafka Broker教程中,我们将学习如何启动Kafka Broker和Kafka命令行选项.那么,让我们开始Apache Kafka Broker. Kafka Broker | 命令行选项和过程 2.什么是Kafa经纪人? Kafka代理也称为Kafka服务器和Kafka节点.这…
在之前的基础上,基本搞清楚了Kafka的机制及如何运用.这里思考一下:Kafka中的消息会不会丢失或重复消费呢?为什么呢? 要确定Kafka的消息是否丢失或重复,从两个方面分析入手:消息发送和消息消费 1.消息发送 Kafka消息发送有两种方式:同步(sync)和异步(async),默认是同步方式,可通过producer.type属性进行配置.Kafka通过配置request.required.acks属性来确认消息的生产: 0---表示不进行消息接收是否成功的确认: 1---表示当Leader…
实现openfire消息记录通常有两种方式,修改服务端和添加消息记录插件. 今天,简单的说明一下修改服务端方式实现消息记录保存功能. 实现思路 修改前: 默认的,openfire只提供保存离线记录至ofOffline表中.当发送一条消息时,判断用户是否在线,若为true,不保存消息:若为fasle,保存消息至离线消息表中. 修改后: 仿照保存离线消息,用户每发送一条消息,将消息存放在ofHistory表中,ofHistory表结构同ofOffline 实现步骤: 1.修改初始数据库文件,路径sr…
转载请注明原创地址 http://www.cnblogs.com/dongxiao-yang/p/5621303.html 最近发现kafka一台服务器producer客户端写入时一直报错,查看该broker服务日志发现日志一直输出下面的内容,看上去应该是broker尝试在zk上注册节点但是产生了session冲突之类的问题. [2016-06-27 17:05:56,608] INFO I wrote this conflicted ephemeral node [{"jmx_port&quo…
这部分内容对了解系统和提高软件性能都有很大的帮助,kafka官网上也给出了比较详细的配置详单,但是我们还是直接从代码来看broker到底有哪些配置需要我们去了解的,配置都有英文注释,所以每一部分是干什么的就不翻译了,都能看懂: ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48…
一.问题描述:Kafka生产集群中有一台机器cdh-003由于物理故障原因挂掉了,并且系统起不来了,使得线上的spark Streaming实时任务不能正常消费,重启实时任务都不行.查看kafka topic状态,发现broker Leader出现-1的情况,如下图 二.问题分析Kafka Broker Leader 为-1,表示有partition在选举Leader的时候失败了,因此引起了消费该Topic的实时任务都出现了异常,经过排除发现挂掉的cdh-003机器正好是broker id为25…
常用的几款消息队列的对比 前言 RabbitMQ 优点 缺点 RocketMQ 优点 缺点 Kafka 优点 缺点 如何选择合适的消息队列 参考 常用的几款消息队列的对比 前言 消息队列的作用: 1.应用耦合:多应用间通过消息队列对同一消息进行处理,避免调用接口失败导致整个过程失败: 2.异步处理:多应用对消息队列中同一消息进行处理,应用间并发处理消息,相比串行处理,减少处理时间: 3.限流削峰:广泛应用于秒杀或抢购活动中,避免流量过大导致应用系统挂掉的情况: 4.消息驱动的系统:系统分为消息队…
这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接收数据主要有两种办法,一种是基于Kafka high-level API实现的基于Receivers的接收方式,另一种是从Spark 1.3版本之后新增的无Receivers的方式.这两种方式的代码编写,性能表现都不相同.本文后续部分对这两种方式逐一进行分析. 一.基于Receiver的模式 这种模…
关于 Topic 和 Partition Topic 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来说,不同的 topic 的消息是分开存储的,每个 topic 可以有多个生产者向它发送消息,也可以有多个消费者去消费其中的消息. Partition 每个 topic 可以划分多个分区(每个 Topic 至少有一个分区),同一 topic 下的不同分区包含的消息是不同的.每个消息在被添加到分区时,都会被…
Kafka发行包里自带的配置样本可以用来安装单机服务,但并不能满足大多数安装场景的要求.kafka有很多配置选项,Kafka有很多配置选项,涉及安装和调优的方方面面.不过大多数调优选项可以使用默认配置,除非你对调优有特别的要求. 常规配置和主题配置(服务端的配置文件) kafka安装包里自带的config目录下有一个名字叫做server.properties的配置文件,这里面的配置项对应的就是标题里说的常规配置和主题配置了.在我的试验环境下,这个文件的绝对路径是:/usr/local/kafka…
参数的设定:参考资料 不错的资料:http://blog.csdn.net/honglei915/article/details/37697655 http://developer.51cto.com/art/201501/464491.htm 注意:在配置文件server.properties中指定了partition的数量num.partitions.这指的是多单个topic的partition数量之和.若有多个broker,可能partition分布在不同的节点上,则多个broker的所有…
Kafka是一种分布式的基于发布/订阅的消息系统,它的高吞吐量.灵活的offset是其它消息系统所没有的. Kafka发送消息主要有三种方式: 1.发送并忘记 2.同步发送 3.异步发送+回调函数 下面以单节点的方式分别用三种方法发送1w条消息测试: 方式一:发送并忘记(不关心消息是否正常到达,对返回结果不做任何判断处理) 发送并忘记的方式本质上也是一种异步的方式,只是它不会获取消息发送的返回结果,这种方式的吞吐量是最高的,但是无法保证消息的可靠性: import pickle import t…
用于Kafka 0.10的结构化流集成从Kafka读取数据并将数据写入到Kafka. 1. Linking 对于使用SBT/Maven项目定义的Scala/Java应用程序,用以下工件artifact连接你的应用程序: 对于Python应用程序,你需要在部署应用程序时添加上面的库及其依赖关系.查看Deploying子节点. 2. Reading Data from Kafka 从Kafka读取数据 2.1 Creating a Kafka Source for Streaming Queries…