GAN 自从被提出以来,就广受大家的关注,尤其是在计算机视觉领域引起了很大的反响,但是这么好的理论是否可以成功地被应用到自然语言处理(NLP)任务呢? Ian Goodfellow 博士 一年前,网友在 reddit 上提问道,生成式对抗网络 GAN 是否可以应用到自然语言处理上.GAN 理论的提出者,OpenAI 的科学家,深度学习理论奠基人之一 Yoshua Bengio 的得意门生 Ian Goodfellow 博士回答了这个问题: GANs 目前并没有应用到自然语言处理(NLP)中,因为…
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked AutoEncoder(堆栈自动编码器) 1. 前言 深度学习是机器学习的一个分支,它设计大量的学习函数和概念模型.大多数机器学习需要大量的人工筛选的特征作为输入,通常特征筛选需要对数据的意义有深入的了解.并且一个能很好的适用于一组数据的特征可能并不使用于其他数据集.深度学习算法在不同层次上对数据进…
这是一篇还在双盲审的论文,不过看了之后感觉作者真的是很有创新能力,ELECTRA可以看作是开辟了一条新的预训练的道路,模型不但提高了计算效率,加快模型的收敛速度,而且在参数很小也表现的非常好. 论文:ELECTRA: PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS ELECTRA全称为Efficiently Learning an Encoder that Classifies Token Replaceme…
目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Transformer:超越LSTM 七.OpenAI Transformer:为语言建模预训练一个Transformer解码器 八.在下游任务中使用迁移学习 九.BERT:从解码器到编码器 MLM语言模型 两个句子的任务 解决特定任务的模型 用于特征提取的BERT 十.把BERT牵出来遛一遛 本文翻译…
本文由云+社区发表 作者:netkiddy 导语 AI在2018年应该是互联网界最火的名词,没有之一.时间来到了9102年,也是项目相关,涉及到了一些AI写作相关的功能,为客户生成一些素材文章.但是,AI并不一定最懂你,客户对于AI写出来的文章,多少是会做些修改的.为了更好的衡量出AI文章的可用度,在这儿就会需要存有一个反馈的环节,来看看用户润色后的文章与原始AI文章之间的区别是多大,AI写出来的文章可用性是否足够.由于目前还没精力细究AI写作其中的细节,为了更好地计算每次成文与原文的区分,便花…
转自:http://blog.csdn.net/malefactor/article/details/51078135 CNN是目前自然语言处理中和RNN并驾齐驱的两种最常见的深度学习模型.图1展示了在NLP任务中使用CNN模型的典型网络结构.一般而言,输入的字或者词用Word Embedding的方式表达,这样本来一维的文本信息输入就转换成了二维的输入结构,假设输入X包含m个字符,而每个字符的Word Embedding的长度为d,那么输入就是m*d的二维向量. 图1 自然语言处理中CNN模型…
http://blog.csdn.net/malefactor/article/details/50725480 /* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ author: 张俊林 序列标注问题应该说是自然语言处理中最常见的问题,而且很可能是最而没有之一.在深度学习没有广泛渗透到各个应用领域之前,传统的最常用的解决序列标注问题的方案是最大熵.CRF等模型,尤其是CRF,基本是最主流的方法.随着深度学习的不断探索和发展,很可能RNN模型会取代CRF的传统霸主地位,会成…
原文链接: https://blog.csdn.net/qq_41058526/article/details/80578932 attention 总结 参考:注意力机制(Attention Mechanism)在自然语言处理中的应用 Attention函数的本质可以被描述为一个查询(query)到一系列(键key-值value)对的映射,如下图. 在计算attention时主要分为三步: 第一步是将query和每个key进行相似度计算得到权重,常用的相似度函数有点积,拼接,感知机等: 第二步…
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for Deep Learning of Representations?>,该文主要对比了基于树形结构的递归神经网络(Recursive neural network)和基于序列结构的循环神经网络(Recurrent neural network),在4类NLP任务上进行实验,来讨论深度学习模型何时需要树形结…
此篇文章是Denny Britz关于CNN在NLP中应用的理解,他本人也曾在Google Brain项目中参与多项关于NLP的项目. · 翻译不周到的地方请大家见谅. 阅读完本文大概需要7分钟左右的时间,如果您有收获,请点赞关注 :) 一.理解NLP中的卷积神经网络(CNN) 现在当我们听到神经网络(CNN)的时候,一般都会想到它在计算机视觉上的应用,尤其是CNN使图像分类取得了巨大突破,而且从Facebook的图像自动标注到自动驾驶汽车系统,CNN已经成为了核心. 最近,将CNN应用于NLP也…