bzoj4558[JLoi2016]方 容斥+count】的更多相关文章

4558: [JLoi2016]方 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 452  Solved: 205[Submit][Status][Discuss] Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点…
题目传送门 题目描述 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形上帝把我们派到了一个有N行M列的方格图上,图上一共有$(N+1)\times (M+1)$个格点,我们需要做的就是找出这些格点形成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多了,所以上帝删掉了这$(N+1)\times (M+1)$中的$K$个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成了多少个正方形呢?…
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢? Input 第一行三个整数…
http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少有4个点被删掉的 正方形分 正着的和斜着的 斜着的正方形卡在一个正着的正方形的边框上 一个边长为i的正方形框,恰好可以框住i个正方形(1个正着的 和 i-1个斜着的) 所以 总的正方形=  至少有一个点被删掉的: 枚举一个被删掉的点, 设它的上边有u行,下边有d行,左边有l列,右边有r列 那么以一对…
BZOJ 洛谷 图基本来自这儿. 看到这种计数问题考虑容斥.\(Ans=\) 没有限制的正方形个数 - 以\(i\)为顶点的正方形个数 + 以\(i,j\)为顶点的正方形个数 - 以\(i,j,k\)为顶点的正方形个数 + 以\(i,j,k,l\)为顶点的正方形个数,\(i,j,k,l\)都代表不同的坏点. 其实说,\(Ans=\) 至少包含\(0\)个坏点的正方形个数 - 至少包含\(1\)个坏点的正方形个数 + 至少包含\(2\)个的个数 - 至少包含\(3\)个的个数 + 至少包含\(4\…
Description 上帝说,不要圆,要方,于是便有了这道题.由于我们应该方,而且最好能够尽量方,所以上帝派我们来找正方形 上帝把我们派到了一个有N行M列的方格图上,图上一共有(N+1)×(M+1)个格点,我们需要做的就是找出这些格点形 成了多少个正方形(换句话说,正方形的四个顶点都是格点).但是这个问题对于我们来说太难了,因为点数太多 了,所以上帝删掉了这(N+1)×(M+1)中的K个点.既然点变少了,问题也就变简单了,那么这个时候这些格点组成 了多少个正方形呢? Input 第一行三个整数…
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status][Discuss] Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获 得的成绩,则称A被B碾压.在B…
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门课上A获得的成绩均小于等于B获得的成绩,则称A被B碾压.在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没有被他碾压.D神查到了B神每门必修课的排名.这里的排名是指:如果B神某门课的排名为R,则表示有且…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4559 题解: 容斥,拉格朗日插值法. 结合网上的另一种方法,以及插值法,可以把本题做到 O(N2)+O(N2+logN),(本题的 O(N3)以及拉格朗日插值法在本题的用法,本篇目不再赘述.) 定义 f[k]表示至少碾压 k个人的方案数(只考虑分数相对大小关系,不考虑实际分数大小).式子的含义是从N-1个人里面选K个人来碾压,然后对于每门科目,再从没被碾压的人里选一些出来使得B神在本科目的…
BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]\times C_k^{k-j}\times C_{n-1-k}^{R_i-1-(k-j)}\times g[i]\] 就是先从\(k\)人中选出\(k-j\)在\(i\)这门课比B神得分高,然后再从剩下\(n-1-k\)个人中选\(R_i-1-(k-j)\)个…