R--线性回归诊断(一)】的更多相关文章

线性回归诊断--R [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt   勿忘初心  无畏未来 作为一个初学者,水平有限,欢迎交流指正. 在R中线性回归,一般使用lm函数就可以得到线性回归模型,但是得到的模型到底合不合适?在我们使用所得到的线性模型之前就需要进行回归诊断. 线性回归的诊断,主要是检验线性回归模型的假设是否成立. 线性回归模型    y=Θ0+Θ1x1+Θ2x2+.......+Θmxm+ε    (自变量与因变量之间是线性关系)…
线性回归诊断--R [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt   勿忘初心  无畏未来 作为一个初学者,水平有限,欢迎交流指正. R--线性回归诊断(一)  主要介绍了线性回归诊断的主要内容和基本方法. 本文作为R中线性回归诊断的进一步延伸,将主要介绍用car包中的相关函数就行线性回归诊断. > > head(bank) y x1 x2 x3 x4 1 1018.4 96259 2239.1 50760 1132.3 2 1258.9…
   Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本人的一份学习总结,也希望和朋友们进行交流学习. 该书是The Elements of Statistical Learning 的R语言简明版,包含了对算法的简明介绍以及其R实现,最让我感兴趣的是算法的R语言实现. [转载时请注明来源]:http://www.cnblogs.com/runner-l…
2月22日更新:   0.Python从零开始系列连载: Python从零开始系列连载(1)——安装环境 Python从零开始系列连载(2)——jupyter的常用操作 Python从零开始系列连载(3)——Python的基本数据类型(上) Python从零开始系列连载(4)——Python的基本数据类型(下) Python从零开始系列连载(5)——Python的基本运算和表达式(上) Python从零开始系列连载(6)——Python的基本运算和表达式(下) Python从零开始系列连载(7)…
基本语法: #nmap [扫描方式] [命令选项] {目标} 扫描目标格式: IPv4 地址: 192.168.1.1IPv6 地址:AABB:CCDD::FF%eth0主机名:www.target.tgtIP 地址范围:192.168.0-255.0-255掩码格式:192.168.0.0/16使用列表文件:-iL <filename> 设置扫描端口 无端口范围时扫描1000 个常用端口 -F 扫描100个最常用端口-p<port1>-<port2>   指定端口范围…
基本语法: #nmap [扫描方式] [命令选项] {目标}   扫描目标格式: IPv4 地址: 192.168.1.1IPv6 地址:AABB:CCDD::FF%eth0主机名:www.target.tgtIP 地址范围:192.168.0-255.0-255掩码格式:192.168.0.0/16使用列表文件:-iL <filename> 设置扫描端口 无端口范围时扫描1000 个常用端口 -F 扫描100个最常用端口-p<port1>-<port2>   指定端口…
传送门 Description 给你一个\(n~\times~m\)的矩阵,一开始你在第\(r\)行第\(c\)列.你的上下移动不受限制,向左最多移动\(x\)次,向右最多移动\(y\)次.求你最多能到多少个点.包括起始点. Input 第一行是\(n\)和\(m\),代表矩阵规模. 第二行是\(r\)和\(c\),代表你的位置 第三行是\(x\)和\(y\),代表移动限制 下面\(n\)行每行\(m\)个字符,有且仅有'.'和''两种.如果第\(i\)行第\(j\)列是''代表你不能经过这个点…
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可.R是一个质数.//codevs这里有坑,R是合数 输入输出格式 输入格式: 第一行为两个整数T,R.R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模 后面T行,每行一对整数N,M,…
树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题(T12) 5.dp题最基本的考察是对题意模型的转化,以应用在各个方面 6.前缀和等技巧优化dp 7.树形背包是n*n的! T1 BZOJ1304 [CQOI2009]叶子的染色 首先是对于固定根节点的\(dp\) \(dp\)状态\(dp[3]\)为子树还需要颜色\(1,2\),或不需要 转移比较简…
##################    Rancher v2.1.7  +    Kubernetes 1.13.4  ################ #######################    以下为声明  ##################### 此文档是在两台机上进行的实践,kubernetes处于不断开发阶段 不能保证每个步骤都能准确到同步开发进度,所以如果安装部署过程中有问题请尽量google 按照下面步骤能得到什么? 1.两台主机之一会作为Rancher的serve…
txt_filename = './files/python_baidu.txt' # 打开文件 file_obj = open(txt_filename, 'r', encoding='utf-8') # 读取整个文件内容 all_content = file_obj.read() # 关闭文件 file_obj.close() print(all_content) 结果: Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语…
{#portal.html#} {## ————————46PerfectCRM实现登陆后页面才能访问————————#} {#{% extends 'king_admin/table_index.html' %}#} {#{% block right-container-content %}#} {#<div class="container col-lg-offset-3">#} {# <h2><a class="form-signin-he…
回归诊断 回归诊断 1.样本是否符合正态分布假设? 2.是否存在离群值导致模型发生较大误差? 3.线性模型是否合理? 4.误差是否满足独立性.等方差.正态分布等假设条件? 5.是否存在多重共线性 正态分布检验:函数shapiro.test() P>0.05,正态分布 例题1 Anscomber数据 数据 1-3 1 2 3 4 4 号 X Y Y Y X Y 1 10.0 8.04 9.14 7.46 8.0 6.58 2 8.0 6.95 8.14 6.77 8.0 5.76 3 13.0 7…
如何判断我们的线性回归模型是正确的? 1.回归诊断的基本方法opar<-par(no.readOnly=TRUE) fit <- lm(weight ~ height, data = women)par(mfrow = c(2, 2))plot(fit)par(opar) 为理解这些图形,我们来回顾一下OLS回归的统计假设.(1)正态性(主要使用QQ图) 当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布.正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值…
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题:应该选择哪些变量? RSS(残差平方和)与R2(相关系数平方)选择法:遍历所有可能的组合,选出使RSS最小,R2最大的模型 AIC(Akaike information criterion)准则和BIC(Bayesian information criterion)准则 AIC=n×ln(RSSP…
附注:不要问我为什么写这么快,是16年写的. 1.名词解释 支持向量机中的机:在机器学习领域,常把一些算法看做一个机器,如分类机(也叫作分类器) 2.问题描述 空间中有很多已知类别的点,现在想用一个面分开他们,并能对未知类别的点很好的识别类别. 3.算法思想 由问题描述可知,现在算法要解决两个问题: 找到一个平面,可以很好的区分不同类别的点,即使分类器的训练误差小,线性可分时要求训练误差为0. 很好的识别未知类别样本的类别,即多大程度上信任该分类器在未知样本上分类的效果. 令满足以上两点的超平面…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有固定效应外还有随机效应. 笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节.中介效应).一个是随机性方向(固定效应.随机效应). 两个方向的选择需要根据业务需求: 交互效应较多探究的是变量之间的网络关系,可能会有很多变量,多变量之间的关系: 而随机性探究的是变量…
皮尔逊积矩线性相关系数(Pearson's r)用于计算两组数组之间是否有线性关联,举个例子: a = pd.Series([1,2,3,4,5,6,7,8,9,10]) b = pd.Series([2,3,4,5,6,7,8,9,10,11]) 计算两组数据的线性相关性,就是,b是否随着a的增长而增长,或者随着a的增长而减小,或者两者不相关: 皮尔逊积矩线性相关系数的公式是: (标准化数据a * 标准化数据b).mean() def correlation(x, y): meanX = x.…
之前数篇博客我们比较了几种具有代表性的聚类算法,但现实工作中,最多的问题是分类与定性预测,即通过基于已标注类型的数据的各显著特征值,通过大量样本训练出的模型,来对新出现的样本进行分类,这也是机器学习中最多的问题,而本文便要介绍分类算法中比较古老的线性判别分析: 线性判别 最早提出合理的判别分析法者是R.A.Fisher(1936),Fisher提出将线性判别函数用于花卉分类上,将花卉的各种特征利用线性组合方法变成单变量值,即将高维数据利用线性判别函数进行线性变化投影到一条直线上,再利用单值比较方…
8.3回归诊断 > fit<-lm(weight~height,data=women) > par(mfrow=c(2,2)) > plot(fit) 为理解这些图形,我们来回顾一下oLs回归的统计假设. 口正态性当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布.正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图.若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设. 口独立性你无…
R语言中的线性判别分析_r语言 线性判别分析 在R语言中,线性判别分析(Liner Discriminant Analysis,简称LDA),依靠软件包MASS中有线性判别函数lqa()来实现.该函数有三种调用格式: 1)当对象为数据框data.frame时 lda(x,grouping,prior = propotions,tol = 1.0e-4,method,CV = FALSE,nu,-) 2) 当对象为公式Formula时 lda(formula,data,-,subnet,na.ac…
y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%). (1) 建立线性模型: ① 自己编写函数: > library(openxlsx) > data = read.xlsx("22_data.xlsx",sheet = 1) > x = data[,-c(1,2)] > x = cbind(rep(1,17),x) > x_mat = as.matrix(x) > y…
#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公式#plot(a)绘制模型诊断图#predict(a)用作预测#print(a)显示#residuals()计算残差#setp()逐步回归分析#summary()提取模型资料 #多元线性回归分析 #回归系数的估计 #显著性检验: 1回归系数的显著性检验 t检验 就是检验某个变量系数是否为0 2回归方程的显…
> x=iris[which(iris$Species=="setosa"),1:4] > plot(x) 首先是简单的肉眼观察数据之间相关性 多元回归相较于一元回归的最主要困难可能就是变量的选择,如下面的例子 使用Swiss数据集(R内置) Swiss Fertility and Socioeconomic Indicators(1888) Data 建立多元线性回归 > s=lm(Fertility~.,data=swiss) > print(s) Call…
rm(list = ls()) A = read.csv("data115.csv") fm = lm(y~x1+x2,data = A) coef(fm) A.cooks = cooks.distance(fm) #计算cook距离 new_A = cbind(A,A.cooks) #把原始数据与cook距离放在一个数据框中查看 new_A[order(A.cooks,decreasing = T),]#按cook距离降序排列 显示西藏地区数据对应的cook统计量明显过大,不能放入建…
rm(list = ls()) #数据处理 library(openxlsx) library(car) library(lmtest) data = read.xlsx("xiti4.xlsx",sheet = 1) data attach(data) fm1 = lm(y~x1+x2+x3+x4+x5+x6+x7) #多元回归模型 coef(fm1) #残差图:残差分析 ei = resid(fm1) X = cbind(1,as.matrix(data[,2:8])) t = t…
对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自变量: m个样本,就对应着一个m维的列向量Y,一个m×n维的矩阵X Y是X的每一列X1,...,Xn的函数 那么,Y与X1,...,Xn之间到底是什么关系呢?是满足Y=a1*X1+...+an*Xn这样的线性关系还是Y=f(X1,...,Xn)这样的非线性关系呢? 为了解决这个问题,可以首先利用多元…
--多项式回归模型 --单变量多项式模型 --多变量多项式模型 rm(list = ls()) library(openxlsx) library(leaps) #单变量多项式模型# data = read.xlsx("table7-1.xlsx") head(data) plot(data$f,data$mw) attach(data) new_data = as.data.frame(cbind(mw,f,f**2,f**3)) names(new_data) = c("…
rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data141.xlsx") head(A) fm = lm(y~x1+x2+x3+x4 , data=A ) #判断多重共线性 vif(fm) > vif(fm) x1 x2 x3 x4 38.49621 254.42317 46.86839 282.51286 #具有多重共线性 #进行主成分回归 A.pr = princomp…
rm(list = ls()) library(car) library(MASS) library(openxlsx) A = read.xlsx("data140.xlsx") head(A) attach(A) fm = lm(y~x1+x2+x3 , data=A) #建立模型 vif(fm) #查看模型是否存在共线性 > vif(fm) #查看模型是否存在共线性 x1 x2 x3 21.631451 21.894402 1.334751 结果显示存在共线性 summar…