深层神经网络框架的python实现】的更多相关文章

概述 本文demo非常适合入门AI与深度学习的同学,从最基础的知识讲起,只要有一点点的高等数学.统计学.矩阵的相关知识,相信大家完全可以看明白.程序的编写不借助任何第三方的深度学习库,从最底层写起. 第一,本文介绍了什么是神经网络,神经网络的特点,神经网络中的BP算法,神经网络的训练方法,神经网络的激活函数,损失函数.权值初始化方法.权值的正则化机制等一系列知识. 第二,在此基础上,使用最基础的python语法来实现一个神经网络框架,利用此神经网络框架,可以搭建自己的深度神经网络,同时大家也可以…
深层神经网络可以解决部分浅层神经网络解决不了的问题. 神经网络的优化目标-----损失函数 深度学习:一类通过多层非线性变化对高复杂性数据建模算法的合集.(两个重要的特性:多层和非线性) 线性模型的最大特点:任意线性模型的组合仍然是线性模型.(任意层的全连接神经网络和单层神经网络模型的表达能力没有任何区别) 激活函数实现去线性化:ReLU函数  sigmoid函数  tanh函数 (增加偏置项) ,TensorFlow支持7中不同的非线性激活函数 感知机:单层的神经网络,无法模拟异或运算.加入隐…
Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是贾扬清,加州大学伯克利的ph.D,现就职于FaceBook.caffe的官网是http://caffe.berkeleyvision.org/. Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作. Caffe是纯粹的C++/CUDA…
一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试. 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量使用numpy的矩阵运算用于训练网络,公式的推导过程可以参考此篇博客,细节上…
TensorFlow基础见前博客 上实例: MNIST 数据集介绍 MNIST 是一个手写阿拉伯数字的数据集. 其中包含有 60000 个已经标注了的训练集,还有 10000 个用于测试的测试集. 本次实验的任务就是通过手写数字的图片,识别出具体写的是 0-9 之中的哪个数字.   理论知识回顾 一个两层的深层神经网络结构如下: 上图所示的是一个具有两层隐藏层的深层神经网络 第一个隐藏层有 4 个节点,对应的激活函数为 ReLu 函数 第一个隐藏层有 2 个节点,对应的激活函数也是 Relu 函…
维基百科对深度学习的精确定义为“一类通过多层非线性变换对高复杂性数据建模算法的合集”.因为深层神经网络是实现“多层非线性变换”最常用的一种方法,所以在实际中可以认为深度学习就是深度神经网络的代名词.从维基百科给出的定义可以看出,深度学习有两个非常重要的特性——多层和非线性.那么为什么要强调这两个性质呢?下面我们开始学习. 1,线性模型的局限性 在线性模型中,模型的输出为输入的加权和.假设一个模型的输出 y  和输入 xi 满足以下关系,那么这个模型就是一个线性模型: 其中,wi , b € R…
我一直觉得TensorFlow的深度神经网络代码非常困难且繁琐,对TensorFlow搭建模型也十分困惑,所以我近期阅读了大量的神经网络代码,终于找到了搭建神经网络的规律,各位要是觉得我的文章对你有帮助不妨点一个关注. 我个人把深度学习分为以下步骤:数据处理 --> 模型搭建 --> 构建损失 --> 模型训练 --> 模型评估 我先把代码放出来,然后一点一点来讲 # Author:凌逆战 # -*- encoding:utf-8 -*- # 修改时间:2020年5月31日 imp…
一.深层神经网络 深层神经网络的符号与浅层的不同,记录如下: 用\(L\)表示层数,该神经网络\(L=4\) \(n^{[l]}\)表示第\(l\)层的神经元的数量,例如\(n^{[1]}=n^{[2]}=5,n^{[3]}=3,n^{[4]}=1\) \(a^{[l]}\)表示第\(l\)层中的激活函数,\(a^{[l]}=g^{[l]}(z^{[l]})\) 二.前向和反向传播 1. 第\(l\)层的前向传播 输入为 \(a^{[l-1]}\) 输出为 \(a^{[l]}\), cache(…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
Serpent.AI - 游戏代理框架(Python) Serpent.AI是一个简单而强大的新颖框架,可帮助开发人员创建游戏代理.将您拥有的任何视频游戏变成一个成熟的实验的沙箱环境,所有这些都是熟悉的Python代码.框架的存在理由首先是为机器学习和人工智能研究提供有价值的工具.用作爱好者(和危险的上瘾,公正的警告)也是非常有趣的!该框架具有大量的支持模块,它们在使用视频游戏作为环境以及CLI工具来加速开发时,为常见的场景提供解决方案.它提供了一些有用的约定,但绝对没有看到你在代理中的内容:想…