【51nod】1594 Gcd and Phi】的更多相关文章

题解 跟随小迪学姐的步伐,学习一下数论 小迪学姐太巨了! 这道题的式子很好推嘛 \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) [gcd(\frac{\phi(i)}{d},\frac{\phi(j)}{d}) == 1]\) \(\sum_{i = 1}^{n} \sum_{j = 1}^{n} \sum_{d|\phi(i),\phi(j)} \phi(d) \sum_{t | \frac{\phi(i…
题解 话说LOJ说我今天宜学数论= =看到小迪学了杜教筛去蹭了一波小迪做的题 标解的杜教筛的函数不懂啊,怎么推的毫无思路= = 所以写了个复杂度稍微高一点的?? 首先,我们发现f是个积性函数,那么我们就有-- \(\prod_{i = 1}^{k}f(p_{i}^{a_{i}})\) 我们发现,对于每个质因子,gcd是取较小值,lcm取较大值 \(f(lcm(x,y)) * f(gcd(x,y)) = \prod_{i = 1}^{k} f(p_{i}^{max(a_{i},b_{i}) + m…
[51nod]1602 矩阵方程的解 这个行向量显然就是莫比乌斯函数啦,好蠢的隐藏方法= = 然后我们尝试二分,二分的话要求一个这个东西 \(H(n) = \sum_{i = 1}^{n} \mu(i) == d\) 当然\(\mu(x)\)由于一些很好的性质,这个东西可以用分类讨论做出来 众所周知,求\(\mu\)不为0的数的方法就是容斥求无平方因子数 \(G(n) = \sum_{i = 1}^{\sqrt{N}} \mu(i) \lfloor \frac{N}{i^{2}} \rfloor…
[51nod]1634 刚体图 给一个左边n个点右边m个点二分图求合法的连通图个数,每条边选了之后会带来价值乘2的贡献 类似城市规划那道题的计数 设\(g[i][j]\)为左边\(i\)个点,右边\(j\)个点的图有多少个(就是边随便连) \(f[i][j]\)为左边\(i\)个点右边\(j\)个点的连通图有多少个 然后枚举和左边第一个点连通的联通块是几个左边点,几个右边点 答案可以认为是 \(f[i][j] = g[i][j] - \sum_{k = 0}^{i - 1}\sum_{h = 0…
[51nod]1407 与与与与 设\(f(x)\) 为\(A_{i} \& x == x\)的\(A_{i}\)的个数 设\(g(x)\)为\(x\)里1的个数 \(\sum_{i = 0}^{2^{20}} (-1)^{g(x)}2^{f(x)}\) \(f(x)\)就是按位取反之后的一个FMT卷积,把判断条件改成这一位不存在即可 也可以用FWT的与卷积直接卷起来 #include <bits/stdc++.h> #define fi first #define se second…
[51nod]1776 路径计数 我们先把前两种数给排好,排好之后会有\(a + b + 1\)个空隙可以填数,我们计算有\(k\)个空隙两端都是相同字母的方案数 可以用枚举把第二种数分成几段插进去来算,设这个方案数为\(f[k]\) 然后对于一种有\(k\)个空隙的方案数,枚举剩下的\(a + b + 1 - k\)个空隙填了\(h\)个 然后计算把\(C\)和\(D\)分成\(k + h\)段的方案数就好了,记为\(g[k + h]\) 那么如何计算\(g[i]\)呢 一段要么是偶数,\(C…
[51nod] 2622 围绕着我们的圆环 kcz出的一道比赛题 第一次写带修改的线性基 ps:我觉得我计数计的好麻烦 首先是这个可以认为第二个矩阵是\(q\)个\(s\)位数,如果这\(q\)个数的线性基可以消掉\(C\)中每一行,那么答案就应该是,设线性基个数是\(x\),则应该是\(2^{q - x}\)随便选,然后剩下的用线性基消掉即可,所以系数是\(2^{p(q - x)}\)(因为第一个矩阵有\(p\)行) 那么问题就来了,我们要统计以下两个东西 1.\(q\)个\(s\)位数组成\…
[51nod]2564 格子染色 这道题原来是网络流-- 感觉我网络流水平不行-- 这种只有两种选择的可以源点向该点连一条容量为b的边,该点向汇点连一条容量为w的边,如果割掉了b证明选w,如果割掉了w证明选b 那么\(p\)的限制怎么加呢,新建一个点\(i'\),然后\(i\)往\(i'\)流一条容量为\(p\)的边 \(i'\)再向所有不合法的\(j\)连一条容量为正无穷的边,这样如果\(i\)选了\(b\),\(j\)选了\(w\),会有水流从\(i\rightarrow i' \right…
[51nod]2027 期望问题 %%%zsy 看不懂题解的垃圾选手在zsy大佬的讲解下终于知道了这道题咋做-- 先把所有\(a\)从大到小排序 设\(f_{i}\)为前\(i\)个数组成的排列的值,然后显然第\(i + 1\)个插进来的时候,有\(i + 1\)个位置,而且它比谁都要大 以下默认\(f_{1}\)到\(f_{k - 1}\)都是0(因为他们一定是最后弹出的,可以直接算),我们只针对排在k及以后的数讨论贡献 当第\(i\)个数加进来的时候,它有\(i\)种插入位置,前\(k -…
[51nod]2591 最终讨伐 敲51nod是啥评测机啊,好几次都编译超时然后同一份代码莫名奇妙在众多0ms中忽然超时 这道题很简单就是\(M\)名既被诅咒也有石头的人,要么就把石头给没有石头被诅咒的人,然后互换身份,要么就找一些人构成一个置换圈,内部消化,\(N\)名有石头没诅咒的人不能把石头给M,只能给没石头有诅咒的人 我们分开来考虑,先强制这\(M\)个人的其中一些一定会把石头给\(N\)名没有石头被诅咒的人 设\(dp[i][j]\)为剩\(i\)对,有诅咒没石头,有石头没诅咒,\(j…