k-means聚类算法C++实现】的更多相关文章

顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也称为有导师学习,网络输入包括数据和相应的输出标签信息.例如,在 MNIST 数据集中,手写数字的每个图像都有一个标签,代表图片中的数字值. 强化学习,也称为评价学习,不给网络提供期望的输出,但空间会提供给出一个奖惩的反馈,当输出正确时,给网络奖励,当输出错误时就惩罚网络. 无监督学习,也称为无导师学…
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心.聚类中心以及分配给它们的对象就代表一个聚类.每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算.这个过程将不断重复直到满足某个终止条件.终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小.…
一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): dataSet = np.loadtxt(filename) return dataSet (二)计算两个向量之间的距离 def distEclud(vecA,vecB): #计算两个向量之间距离 return np.sqrt(np.sum(np.power(vecA-vecB,))) (三)随机初…
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登后,陆陆续续收到本科生.研究生还有博士生的来信和短信微信等,表示了对论文的兴趣以及寻求算法的效果和实现细节,所以,我也就通过邮件或者短信微信来回信,但是有时候也会忘记回复. 另外一个原因也是时间久了,我对于论文以及改进的算法的记忆也越来越模糊,或者那天无意间把代码遗失在哪个角落,真的很难想象我还会全…
1.K-均值聚类法的概述    之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这种聚类算法,所以便仔细地研究了一下它的原理.弄懂了之后就自己手工用matlab编程实现了,最后的结果还不错,嘿嘿~~~   简单来说,K-均值聚类就是在给定了一组样本(x1, x2, ...xn) (xi, i = 1, 2, ... n均是向量) 之后,假设要将其聚为 m(<n) 类,可以按照如下…
这篇博客整理K均值聚类的内容,包括: 1.K均值聚类的原理: 2.初始类中心的选择和类别数K的确定: 3.K均值聚类和EM算法.高斯混合模型的关系. 一.K均值聚类的原理 K均值聚类(K-means)是一种基于中心的聚类算法,通过迭代,将样本分到K个类中,使得每个样本与其所属类的中心或均值的距离之和最小. 1.定义损失函数 假设我们有一个数据集{x1, x2,..., xN},每个样本的特征维度是m维,我们的目标是将数据集划分为K个类别.假定K的值已经给定,那么第k个类别的中心定义为μk,k=1…
聚类 和 k-means简单概括. 聚类是一种 无监督学习 问题,它的目标就是基于 相似度 将相似的子集聚合在一起. k-means算法是聚类分析中使用最广泛的算法之一.它把n个对象根据它们的属性分为k个聚类,以便使得所获得的聚类满足: 同一聚类中的对象相似度较高:而不同聚类中的对象相似度较小. k - means的算法原理: (文/qinm08(简书作者) 原文链接:http://www.jianshu.com/p/32e895a940a2) 使用K-Means算法进行聚类,过程非常直观:(a…
版权声明:<—— 本文为作者呕心沥血打造,若要转载,请注明出处@http://blog.csdn.net/gamer_gyt <—— 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处 ======================================…
关注我们的公众号哦!获取更多精彩哦! 1.问题导入 假如有这样一种情况,在一天你想去某个城市旅游,这个城市里你想去的有70个地方,现在你只有每一个地方的地址,这个地址列表很长,有70个位置.事先肯定要做好攻略,你要把一些比较接近的地方放在一起组成一组,这样就可以安排交通工具抵达这些组的"某个地址",然后步行到每个组内的地址.那么,如何确定这些组,如何确定这些组的"某个地址"?答案就是聚类.而本文所提供的k-means聚类分析方法就可以用于解决这类问题. 2. k均值…
FCM算法是一种基于划分的聚类算法,它的思想就是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小.模糊C均值算法是普通C均值算法的改进,普通C均值算法对于数据的划分是硬性的,而FCM则是一种柔性的模糊划分.在介绍FCM具体算法之前我们先介绍一些模糊集合的基本知识. 1 模糊集基本知识 首先说明隶属度函数的概念.隶属度函数是表示一个对象x隶属于集合A的程度的函数,通常记做μA(x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的所有点),取值范围是[0,1],即0<=…