p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 30.0px "Helvetica Neue"; color: #323333 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "…
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数据. # 用read.csv读取数据timestart<-Sys.time() data <- read.csv("XXXXs.csv",header = T,stringsAsFactors = F) timeend<-Sys.time() runningtime<…
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
这个包让你可以更快地完成数据集的数据处理工作.放弃选取行或列子集的传统方法,用这个包进行数据处理.用最少的代码,你可以做最多的事.相比使用data.frame,data.table可以帮助你减少运算时间.一个数据表格包含三部分,即DT[i, j, by].你可以理解为我们告诉R用i来选出行的子集,并计算通过by来分组的j.大多数时候,by是用于类别变量的. 特点 data.table(DT)的操作语句类似于SQL,DT[i, j, by]中的i, j, by 对应着SQL语句的 i=where,…
library(dplyr) unite(mtcars, "vs_am", vs, am) Merging Data Adding Columns To merge two data frames (datasets) horizontally,  use the merge function. In most cases, you join two data frames  by one or more common key variables (i.e., an inner joi…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始寻求数据操作的效率.于是,data.table这个包就可以很好的满足对大数据量的数据操作的需求. data.table可是比dplyr以及Python中的pandas还好用的数据处理方式. 网络上充斥的是data.table很好,很棒,性能棒之类的,但是从我实际使用来看,就得泼个水,网上博客都是拿一…
    R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容 DT = data.table(x=rep(c("b&…
>library(data.table)>data=fread("10000000.txt")>Read 9999999 rows and 71 (of 71) columns from 3.375 GB file in 00:02:36##一千万行,耗时160s.##同样的数据用read.table函数读取要600s. 参考资料: R语言data.table速查手册:https://www.cnblogs.com/nxld/p/6059570.html https:…
R语言数据分析利器data.table包-数据框结构处理精讲 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度.因此,在对大数据处理上,使用data.table无疑具有极高的效率.这里我们主要讲的是它对数据框结构的快捷处理. 和data.frame的高度兼容…
利用data.table包变形数据 一. 基础概念 data.table 这种数据结构相较于R中本源的data.frame 在数据处理上有运算速度更快,内存运用更高效,可认为它是data.frame 的升级版.同时,data.table 包具备更多更强的功能,它基本工作形式是, dt [i, j, by] dt 为data.table 结构 i 为行,j 为列,by 为分组 二. 创建 data.table 和data.frame一样,如下: data.table(a=c(1, 2), b=c(…