Pólya计数定理】的更多相关文章

我日啊..被cls的计数题虐得欲仙欲死...根本不会计数QAQ... 不懂数学啊... 前置技能 群 群是二元组\((G,*)\),满足 \(*:(G,G)\rightarrow G\) \(\exists e\in G, \forall x\in G, x*e=x=e*x, \mathtt{(单位元)}\) \(\forall x\in G, \exists y\in G, x*y=e, \mathtt{记}y=x^{-1}, \mathtt{(存在逆元)}\) \(\forall x,y,z…
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上,如果使用高精度,那么n可以到1e6级别 群 定义 一个集合G,以及一个二元运算∗. 并且满足: 封闭性 如果a∈G,b∈G,那么a∗b∈G 结合律 如果a∈G,b∈G,c∈G,那么a∗b∗c=a∗(b∗c) 存在单位元 存在c∈G,使得b∗c=c∗b=c 那么c就称为G的单位元. 类似于加法运算中…
1 群 群$(G, cdot)$: 闭合, 结合律, 幺元, 逆 1.1 置换群 置换为双射$pi:[n]to [n]$, 置换之间的操作符 $cdot$ 定义为函数的复合, 即$(pi cdot sigma)(i)=pi(sigma(i))$ 对称群$S_n$ $S_n$表示$[n]$的所有置换的集合. 容易验证$S_n$和函数复合操作 $cdot$ 构成一个群, 称为$n$元对称群.$S_n$的子群称为置换群. 循环群$C_n$ 定义特殊的置换$sigma$满足$forall i, ~sig…
Burnside定理:若一个着色方案s经过置换f后不变,称s为f的不动点,将置换f的不动点的数目记作C(f).等价类的数目等于所有C(f)的平均值. 一个项链,一个手镯,区别在于一个能翻转一个不能,用t种颜色染n颗珠子,求等价类的个数. 旋转置换群一共有n个置换,分别对应将项链整体逆时针旋转0个.1个.2个...珠子的置换. 对于第i个置换,第0个.i个.2i...个珠子构成一个循环,共有gcd(n, i)个循环,每个循环中有n / gcd(n, i)个珠子. 所以n个置换,每个置换的不动点有t…
[数学公式] PG(x1,x2,...,xn) = 1/|G| * ∑π∈G x1^b1 * x2^b2*...*bn^bn   其中π是1^b12^b2...n^bn型轮换 然后一般染色情况下x1=x2=...=xn = m 于是就有了ans = 1/|G|*∑π∈Gm^c(π) 其中c(π)是置换π的轮换(也叫循环节)个数. [算法应用] 对于算法题来说,问题的关键是计算c(π)这个函数. 一种方法是模拟构造每一个置换,然后用函数计算对应的轮换个数. 还有一种方法就是找规律,用套路,然后直接…
Cubes You are given 12 rods of equal length. Each of them is colored in certain color. Your task is to determine in how many different ways one can construct a cube using these rods as edges. Two cubes are considered equal if one of them could be rot…
置换群 设\(N\)表示组合方案集合.如用两种颜色染四个格子,则\(N=\{\{0,0,0,0\},\{0,0,0,1\},\{0,0,1,0\},...,\{1,1,1,1\}\}\),\(|N|=2^4\). 对于\(N\)上的所有置换,它们组成的群称为置换群,记为\(G\).\(G\)中任意两个置换的积仍在\(G\)中. Burnside引理 又称轨道计数定理.Burnside计数定理.Cauchy-Frobenius定理.Pólya-Burnside引理. 定理描述为:\(等价类数量=\…
这个计数定理在考虑对称的计数中非常有用 先给出这个定理的描述,虽然看不太懂: 在一个置换群G={a1,a2,a3……ak}中,把每个置换都写成不相交循环的乘积. 设C1(ak)是在置换ak的作用下不动点的个数,也就是长度为1的循环的个数.通过上述置换的变换操作后可以相等的元素属于同一个等价类 那么等价类的个数就等于: 然后理解一下公式 一正方形分成4格,2着色,有多少种方案?其中,经过转动相同的图象算同一方案. 关于转动,一共有四种置换方法,也就是|G|=4 不动(360度):a1=(1)(2)…
In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c…
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二元组(a,p),a∈A,p∈P ,使得p(a)=a,即a在置换p的作用后还是a). Polya定理其实就是告诉了我们一类问题的不动点数的计算方法. 对于Burnside定理的考察,我见过的有以下几种形式(但归根结底还是计算不动点数): 1.限制a(a∈A)的特点,本题即是如此(限制了各颜色个数,可以…