一篇读书笔记 书籍简评:<ACM/ICPC 算法训练教程>这本书是余立功主编的,代码来自南京理工大学ACM集训队代码库,所以小编看过之后发现确实很实用,适合集训的时候刷题啊~~,当时是听了集训队final的意见买的,感觉还是不错滴. 相对于其他ACM书籍来说,当然如书名所言,这是一本算法训练书,有着大量的算法实战题目和代码,尽管小编还是发现了些许错误= =,有部分注释的语序习惯也有点不太合我的胃口.实战题目较多是比较水的题,但也正因此才能帮助不少新手入门,个人认为还是一本不错的算法书,当然自学…
依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不错的. 线段树简介 这是一种二叉搜索树,类似于区间树,是一种描述线段的树形数据结构,也是ACMer必学的一种数据结构,主要用于查询对一段数据的处理和存储查询,对时间度的优化也是较为明显的,优化后的时间复杂为O(logN).此外,线段树还可以拓展为点树,ZWK线段树等等,与此类似的还有树状数组等等. 例如:要将…
<ACM/ICPC算法训练教程>读书笔记-这一次补上并查集的部分.将对并查集的思想进行详细阐述,并附上本人AC掉POJ1703的Code. 在一些有N个元素的集合应用问题中,通常会将每个元素构成单元素集合,然后按照一定顺序将同属一组的集合合并,期间要反复查找每一个元素在哪个集合中.这类问题往往看似简单,但是数据量很大,因此容易造成TLE或MLE,也就是空间度和时间度极其复杂.因此在这里,我们引入一种抽象的特殊数据结构——并查集. 并查集:类似一个族谱,每个结点均有一个father[x]来表示x…
基本数据结构――堆的基本概念及其操作 小广告:福建安溪一中在线评测系统 Online Judge 在我刚听到堆这个名词的时候,我认为它是一堆东西的集合... 但其实吧它是利用完全二叉树的结构来维护一组数据,然后进行相关操作,一般的操作进行一次的时间复杂度在 O(1)~O(logn)之间. 可谓是相当的引领时尚潮流啊(我不信学信息学的你看到log和1的时间复杂度不会激动一下下)!. 什么是完全二叉树呢?别急着去百度啊,要百度我帮你百度: 若设二叉树的深度为h,除第 h 层外,其它各层 (1-h-1…
引言 - 数据结构堆 堆结构都很耳熟, 从堆排序到优先级队列, 我们总会看见它的身影. 相关的资料太多了, 堆 - https://zh.wikipedia.org/wiki/%E5%A0%86%E7%A9%8D 无数漂亮的图片接二连三, 但目前没搜到一个工程中可以舒服用的代码库. 本文由此痛点而来. 写一篇奇妙数据结构堆的终结代码. 耳熟终究比不过手热 ->--- 对于 heap 接口思考, 我是这样设计 #ifndef _H_HEAP #define _H_HEAP // // cmp_f…
1.堆:堆是一种树,由它实现的优先级队列的插入和删除的时间复杂度都是O(logn),用堆实现的优先级队列虽然和数组实现相比较删除慢了些,但插入的时间快的多了.当速度很重要且有很多插入操作时,可以选择堆来实现优先级队列.2.java的堆和数据结构堆:java的堆是程序员用new能得到的计算机内存的可用部分.而数据结构的堆是一种特殊的二叉树.3.堆是具有如下特点的二叉树: 3.1.它是完全二叉树,也就是说除了树的最后一层节点不需要是满的,其他的每一层从左到右都必须是满的. 3.1.1.完全二叉树图解…
在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,Prim 算法的具体步骤如下: 令 \(G=(V,E)\) 表示原图,\(G'=(V',E')\) 表示 \(G\) 的最小生成树,\(dis_u\) 表示节点 \(u\) 到任意 \(v \in V'\) 的最小距离(初始化为 \(+\infty\)). 任取节点\(s \in V\),令 \(di…
前言: 节主要是给出BST,AVL和红黑树的C++代码,方便自己以后的查阅,其代码依旧是data structures and algorithm analysis in c++ (second edition)一书的作者所给,关于这3中二叉树在前面的博文算法设计和数据结构学习_4(<数据结构和问题求解>part4笔记)中已经有所介绍.这里不会去详细介绍它们的实现和规则,一是因为这方面的介绍性资料超非常多,另外这3种树的难点都在插入和删除部分,其规则本身并不多,但是要用文字和图形解释其实还蛮耗…
数据结构-堆 Java实现. 实现堆自动增长 /** * 数据结构-堆. 自动增长 * */ public class Heap<T extends Comparable> { private Object[] node; private static final int DEFAULT_SIZE = 10; private int size = 0; private int capacity; private Type type; public Heap(Type type){ this(t…
数据结构 - 堆(Heap) 1.堆的定义 堆的形式满足完全二叉树的定义: 若 i < ceil(n/2) ,则节点i为分支节点,否则为叶子节点 叶子节点只可能在最大的两层出现,而最大层次上的叶子节点都依次排列在该层最左侧的位置上 如果有度为1的节点,那么只可能有一个,且该节点只有左孩子 根据堆定义的不同,分为大根堆和小根堆: 大根堆每个节点的值都大于其子节点的值 小根堆每个节点的值都小于其子节点的值 除此之外还有一个重要的内容 单节点也符合堆的特质 2.堆的初始化 堆的初始化可以可以分为如下几…