题面 传送门 题解 首先你得会多项式开根->这里 其次你得会解形如 \[x^2\equiv a \pmod{p}\] 的方程 这里有两种方法,一个是\(bsgs\)(这里),还有一种是\(Cipolla\)(这里)(不过这个只能用来解二次剩余就是了) 代码里留着的是\(bsgs\),注释掉的是\(Cipolla\) 如果用\(Cipolla\)的话注意这里需要求的是较小的那个解 //minamoto #include<bits/stdc++.h> #include<tr1/unor…
FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<algorithm> #define maxn 1000005 using namespace std; inline int read() { ,f=;char ch=getchar(); ; +ch-'; return x*f; }…
传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多项式$B$,求多项式$A$满足$A^2\equiv B\pmod{x^n}$(和多项式求逆一样这里需要取模,否则$A$可能会有无数项) 假设我们已经求出$A'^2\equiv B\pmod{x^n}$,考虑如何计算出$A^2\equiv B\pmod{x^{2n}}$ 首先肯定存在$A^2\equiv B…
CF Round250 E. The Child and Binary Tree 题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同. 也就是说:不带标号,孩子有序 \(n,m \le 10^5\) sro vfk picks orz 和卡特兰数很像啊,\(f_i\)权值为i的方案数,递推式 \[ f[i] = \sum_{i\in C} \sum_{j=0}^{m-i}f[j]f[n-i-j] \] 用OGF表示他 \[ C(x)=\sum_{i\in C}x…
题目大意 一行有\(n\)个球,现在将这些球分成\(k\) 组,每组可以有一个球或相邻两个球.一个球只能在至多一个组中(可以不在任何组中).求对于\(1\leq k\leq m\)的所有\(k\)分别有多少种分组方法. 答案对\(998244353\)取模. \(n\leq {10}^9,m<2^{19}\) 题解 因为\(k>n\)的项都是\(0\),所以我们钦定\(m\leq n\) 考虑DP. 记\(f_{i,j}\)为前\(i\)个球分为\(j\)组的方案数. \[ f_{i,j}=f…
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\}\)中,我们的小朋友就会将其称作神犇的.并且他认为,一棵带点权的树的权值,是其所有顶点权值的总和. 给出一个整数\(m\),你能对于任意的\(s(1\leq s\leq m)\)计算出权值为\(s\)的神犇二叉树的个数吗? 我们只需要知道答案关于\(998244353\)取模后的值. \(n,m\…
设f(n)为权值为n的神犇二叉树个数.考虑如何递推求这个东西. 套路地枚举根节点的左右子树.则f(n)=Σf(i)f(n-i-cj),cj即根的权值.卷积的形式,cj也可以通过卷上一个多项式枚举.可以考虑生成函数. 设F(x)为f(n)的生成函数,G(x)为c(n)的生成函数,G(x)中含有xa项表示存在ci=a.于是可得F(x)=F2(x)G(x)+1.+1是因为枚举根的权值时没有考虑空树即根没有权值的情况. 可以解出F(x)={1±√[1-4G(x)]}/2G(x)=2/{1±√[1-4G(…
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$[x^n]F(x)=\sum_{i=0}^{n}[x^i]G(x)\sum_{j=0}^{n-i}[x^j]F(j)\times [x^{n-j-i}]F(n-j-i)$. (这个式子的意思就是说,不妨设当前根节点的权值为i,然后枚举左右两个子树的权值) 这个式子显然可以通过动规的方式去推,从而得出…
生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. 不太会算复杂度为什么是$n\log {n}$的. 开根号里套了一个求逆,不应该是两个$\log$? #include <map> #include <cmath> #include <queue> #include <cstdio> #include <c…
[BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权值为i的二叉树的个数. 两棵树不同当且仅当树的形态不一样或者是树的某个点的点权不一样 分析 设\(c(i)\)表示数值i是否在集合中.\(f(i)\)表示权值为i的二叉树的个数.那么 \[f(n)=\sum_{i=1}^n c(i) \sum_{j=0}^{n-i} f(j)f(n-i-j)\] 其…
https://www.lydsy.com/JudgeOnline/problem.php?id=3625 愉快地列式子.设\(F[i]\)表示权值为\(i\) 的子树的方案数,\(A[i]\)为\(i\)在不在集合中. \[ F[n]=\sum_{i=0}^n \sum_{j=0}^{n-i}F[i]\cdot F[j]\cdot A[n-i-j] \] 初始状态\(F[0]=1\). 我们把\(F,A\)看成多项式. \[ F(x)-1=F^2(x)\cdot A(x)\\ A(x)\cdo…
题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为g的常数项为零,所以1-4g的常数项为1,的常数项也为1,的常数项就为零,就跑不了逆元,所以舍掉. 最终,跑一个多项式开根和一个多项式求逆就行. CODE 大常数TLE的代码, 自己优化吧(逃 #include<cstdio> #include<iostream> #include&l…
概述 多项式开跟是一个非常重要的知识点,许多多项式题目都要用到这一算法. 用快速数论变换,多项式求逆元和倍增法可以在$O(n log n)$的时间复杂度下求出一个$n$次多项式的开根. 前置技能 快速数论变换(NTT),多项式求逆元,二次剩余. 多项式的开根 给定一个多项式$A(x)$,其次数为$deg_A$,若存在一个多项式$B(x)$,使其满足$deg_B≤deg_A$,且$ B^2(x) \equiv A(x) (mod\ x^n)$,则$B(x)$即为$A(x)$在模$x^n$意义下的的…
参考:https://www.cnblogs.com/2016gdgzoi509/p/8999460.html 列出生成函数方程,g(x)是价值x的个数 \[ f(x)=g(x)*f^2(x)+1 \] +1是f[0]=1 根据公式解出 \[ f(x)=\frac{1+(-)\sqrt{1-4*g(x)}}{2*g(x)} \] 舍去+的答案,分式上下同乘\( 1-\sqrt{1-4*g(x)} \) \[ f(x)=\frac{2}{1+\sqrt{1-4*g(x)}} \] 然后套多项式开跟…
https://www.cnblogs.com/HocRiser/p/8207295.html 安利! 写NTT把i<<=1写成了i<<=2,又调了一年.发现我的日常就是数组开小调调调,变量名写错调调调,反向判if调调调,退役吧. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include&…
题面 传送门 题解 考虑分治 假设我们已经求出\(A'^2\equiv B\pmod{x^n}\),考虑如何计算出\(A^2\equiv B\pmod{x^{2n}}\) 首先肯定存在\(A^2\equiv B\pmod{x^n}\) 然后两式相减\[A'^2-A^2\equiv 0\pmod{x^n}\] \[(A'-A)(A'+A)\equiv 0\pmod{x^n}\] 我们假设\(A'-A\equiv 0\pmod{x^n}\),然后两边平方\[A'^2-2A'A+A^2\equiv 0…
题目大意:给你$n$项多项式$A(x)$,求出$B(x)$满足$B^2(x)\equiv A(x)\pmod{x^n}$ 题解:考虑已经求出$B_0(x)$满足$B_0^2(x)\equiv A(x)\pmod{x^{\lceil\frac n 2\rceil}}$$$B(x)-B_0(x)\equiv0\pmod{x^{\lceil\frac n 2\rceil}}\\B^2(x)−2B(x)B_0(x)+B_0^2(x)≡0\pmod{x^n}\\A(x)-2B(x)B_0(x)+B_0^2…
题意 题目链接 Sol 这个就很没意思了 求个ln,然后系数除以2,然后exp回去. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se second #define LL long long #define ull unsigned long long #define Fin(x) {freopen(#x&q…
思路 按如下式子计算即可 \[ B(x)=\frac{A(x)+B'^2(x)}{2B'(x)} \] 代码 // luogu-judger-enable-o2 #include <cstdio> #include <cstring> #include <algorithm> #define int long long using namespace std; const int MAXN = 300000; const int G = 3; const int inv…
传送门 设生成函数\(C(x) = \sum\limits_{i=0}^\infty [\exists c_j = i]x^i\),答案数组为\(f_1 , f_2 , ..., f_m\),\(F(x) = \sum\limits_{i=1}^m f_ix^i + 1\) 注意到选出一棵合法的二叉树,只需要选择一个合法的权值作为根的权值,选择一棵合法的二叉树(可以为空)作为根的左儿子,选择一棵合法的二叉树(可以为空)作为根的右儿子即可.那么有\(F(x) - 1 = F(x) * F(x) *…
题意 链接 Sol 生成函数博大精深Orz 我们设\(f(i)\)表示权值为\(i\)的二叉树数量,转移的时候可以枚举一下根节点 \(f(n) = \sum_{w \in C_1 \dots C_n} \sum_{j=0}^{n-w} f(j) f(n-w-j)\) 设\(T =n-w\),后半部分变为\(\sum_{j=0}^T f(j) f(T-j)\),是个标准的卷积形式. 对于第一重循环我们可以设出现过的数的生成函数\(C(x)\) 可以得到\(f = C * f * f + 1\),+…
题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 我们再设另外一个函数$F$,定义$F_k$表示总权值为$k$的二叉树个数 那么,一个二叉树显然可以通过两个子树(可以权值为0,也就是空子树)和一个节点构成 那么有如下求$F$的式子 $F_0=1$ $F_k=\sum_{i=0}^k s_i \sum_{j=0}^{k-i} F_j F_{k-i-…
题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \(F(x)=\frac {1+\sqrt{1-4C(x)}}{2C(x)}=\frac 2{1-\sqrt{1-4C(x)}}\) 无解是因为\(x=0\)时\(F(x)=1\) 但是\(\lim\limits_{x\rightarrow 0}\)时\(1-\sqrt{1-4C(x)}趋于0\) \(…
思路: RT //By SiriusRen #include <bits/stdc++.h> using namespace std; <<,mod=; int A[N],C[N],invC[N],c[N],d[N],R[N],tmp[N],xx,len,sqrA[N],F[N]; typedef long long ll; int power(ll x,int y){ ll res=; while(y){ )res=res*x%mod; x=x*x%mod,y>>=;…
生成函数这个东西太好用了~ code: #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s".in","r",stdin) using namespace std; const int mod=998244353,G=3,N=1000003; int A[N],B[N],F[N],g[N],inv2,C[N],D[N],tmp1[N]; inline int q…
前言 这里的全家桶目前只包括了\(ln,exp,sqrt\).还有一些类似于带余数模,快速幂之类用的比较少的有时间再更,\(NTT\)这种前置知识这里不多说. 还有一些基本的导数和微积分内容要了解,建议不懂的可以先去翻翻高二数学书. 之后多项式算法基本是一环扣一环的,所以前面的看不懂对于后面的理解会造成很大影响. 本博客涉及内容偏浅 Tips 这里是一些我个人的模板书写习惯 习惯相关的问题:默认将读入的\(n\)变为\(2\)的整数次幂形式,目前为止这样的做法都不会影响正确性 正确性相关的问题:…
预备知识:FFT/NTT 多项式的逆 给定一个多项式 F(x)F(x)F(x),请求出一个多项式 G(x)G(x)G(x),满足 F(x)∗G(x)≡1(mod xn)F(x)*G(x) \equiv 1(mod\ x^n)F(x)∗G(x)≡1(mod xn). 系数对 998244353998244353998244353 取模,1≤n≤1051≤n≤10^51≤n≤105 首先将多项式的长度拓展至222的次幂,然后我们要求的是 G(x)∗F(x)≡1 (mod xn)G(x)*F(x) \…
(首先要%miskcoo,这位dalao写的博客(这里)实在是太强啦qwq大部分多项式相关的知识都是从这位dalao博客里面学的,下面这篇东西是自己对其博客学习后的一些总结和想法,大部分是按照其博客里面的思路来分析的,并添加了一些自己的理解) 多项式求逆(元) 定义 对于一个多项式\(A(x)\),如果存在一个多项式\(B(x)\),满足\(B(x)\)的次数小于等于\(A(x)\)且\(A(x)B(x)\equiv 1(mod\ x^n)\),那么我们称\(B(x)\)为\(A(x)\)在模\…
试题描述  给出一个正整数n,求n开根号后的整数部分的值.n的位数不超过1000位. 输入 读入一个不超过1000位的正整数n. 输出 输出所求答案 输入示例 17   输出示例 4 高精度开根:需要用的是手算开平方根的方法,我其实这个方法也不会,是临时到网上学习的 网上说的方法都挺详细的,我在这里就不详细说了,下面直接贴代码: 高精度模板需要用到高减高,高乘低,高加低. #include<iostream> #include<algorithm> #include<cmat…
在焦作站的acm网络赛中遇到了一个高精度开根的水题--但是那时候WA了 后面学写java补题还T了orz 所以写一篇文章来记录一下java的大整数类型的基础和开根还有一点心得体会吧 首先给那一题的题面和模板 Jessie and Justin want to participate in e-sports. E-sports contain many games, but they don't know which one to choose, so they use a way to make…