1 训练/验证/测试集( Train/Dev/test sets ) 构建神经网络的时候有些参数需要选择,比如层数,单元数,学习率,激活函数.这些参数可以通过在验证集上的表现好坏来进行选择. 前几年机器学习普遍的做法: 把数据分成60%训练集,20%验证集,20%测试集.如果有指明的测试集,那就用把数据分成70%训练集,30%验证集. 现在数据量大了,那么验证集和数据集的比例会变小.比如我们有100w的数据,取1w条数据来评估就可以了,取1w做验证集,1w做测试集,剩下的用来训练,即98%的训练…
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 2018-08-11 13:42:23 This video can be found from: https://www.youtube.com/watch?v=yQdD_R_I6vc  Slides: https://www.csie.ntu.edu.tw/~yvchen/f106-adl/doc/1…
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can be found from: Model Agnostic Meta Learning Related Videos: My talk for Model Agnostic Meta Learning with domain adaptation Paper: https://arxiv.org/p…
深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtube =====>>  问题是:language 到底是否是 recursive 的呢? ======>> 上述几个图,就展示了这个语法树的成长过程... ================================================== ========>&g…
深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Youtube  Issue: 传统方法中,当你的训练数据中,没有那么丰富的 training data,那么可能会导致部分数据的预测为 0,如上图所示.为了不让它变成 0,所以,我们给它一个非常小的 value,如:0.0001.但是这种给定的低概率的 value,是相当不准确的. 所以,我们想能否有一种…
深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://blog.openai.com/openai-baselines-ppo/ Code: https://github.com/openai/baselines Paper: https://arxiv.org/pdf/1707.06347.pdf Video Tutorials: https://ww…
深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.youtube.com/watch?v=z95ZYgPgXOY&t=512s…
深度学习课程笔记(十)Q-learning (Continuous Action) 2018-07-10 22:40:28 reference:https://www.youtube.com/watch?v=tnPVcec22cg…
深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/2015-11-27/vae.html 2. Paper: https://arxiv.org/pdf/1312.6114.pdf…
深度学习课程笔记(八)GAN 公式推导 2018-07-10  16:15:07…