HashMap在并发场景下踩过的坑】的更多相关文章

本文来自网易云社区 作者:张伟 关于HashMap在并发场景下的问题有很多人,很多公司遇到过!也很多人总结过,我们很多时候都认为这样都坑距离自己很远,自己一定不会掉入这样都坑.可是我们随时都有就遇到了这样都问题,坑一直都在我们身边.今天遇到了一个非线程安全对象在并发场景下使用的问题,通过这个案例分析HashMap 在并发场景下使用存在的问题(当然在这个案例中还有很多问题值得我们去分析,值得大家引以为戒.)通过分析问题产生都原因,让我们今后更好远离这个BUG. 代码如图所示,大家都应该知道Hash…
Qunar机票技术部就有一个全年很关键的一个指标:搜索缓存命中率,当时已经做到了>99.7%.再往后,每提高0.1%,优化难度成指数级增长了.哪怕是千分之一,也直接影响用户体验,影响每天上万张机票的销售额. 在高并发场景下,提供了保证线程安全的对象.方法.比如经典的ConcurrentHashMap,它比起HashMap,有更小粒度的锁,并发读写性能更好.线程安全的StringBuilder取代String.StringBuffer等等(Java在多线程这块实现是非常优秀和成熟的). Java…
参考链接:并发场景下HashMap死循环导致CPU100%的问题…
这个问题是在面试时常问的几个问题,一般在问这个问题之前会问Hashmap和HashTable的区别?面试者一般会回答:hashtable是线程安全的,hashmap是线程不安全的. 那么面试官就会紧接着问道,为什么hashmap不是线程安全的,会造成什么问题么?于是面试者就回答:HashMap在并发情况下的put操作会造成死循环. 这时候就会被面试官问:HashMap在并发为什么造成死循环? 很多面试者这时候就会一脸懵.没有过相关经验和深入的理解源码是很难回答这个问题的. 下面我们就通过HahM…
看了一篇网友日志,感觉工作中值得借鉴,原文如下: 事故描述 在一次项目中,上线了一新功能之后,陆陆续续的有客服向我们反应,有用户的个别道具数量高达42亿,但是当时一直没有到证据表示这是,确实存在,并且直觉告诉我们,这是不可能的,就一直没有在意,直到后来真的发现了一个用户确实是42亿,当时我们整个公司都震惊了,如果有大量用户是这样的情况,公司要亏损几十万,我们的老大告诉我们,肯定是什么地方数据溢出的,最后我们一帮人,疯了似的查代码,发现…… 如果按照正常的程序逻辑走下去,代码是完全没问题,但是我发…
package xxx; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 高并发场景下System.currentTimeMillis()的性能问题的优化 * <p><p> * System.currentTimeMillis()的调用比new一个普通对象要耗时的多(具体耗时高出多少我还没测试过,有人说是100…
在项目中使用HttpClient可能是很普遍,尤其在当下微服务大火形势下,如果服务之间是http调用就少不了跟http客户端找交道.由于项目用户规模不同以及应用场景不同,很多时候可能不需要特别处理也.然而在一些高并发场景下必须要做一些优化. 项目是快递公司的快件轨迹查询项目,目前平均每小时调用量千万级别.轨迹查询以Oracle为主要数据源,Mongodb为备用,当Oracle不可用时,数据源切换到Mongodb.今年菜鸟团队加入后,主要数据迁移到了阿里云上,以Hbase为主要存储.其中Hbase…
高并发场景下System.currentTimeMillis()的性能问题的优化 package cn.ucaner.alpaca.common.util.key; import java.sql.Timestamp; import java.util.concurrent.*; import java.util.concurrent.atomic.AtomicLong; /** * 高并发场景下System.currentTimeMillis()的性能问题的优化 * <p><p>…
C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读多写少的场景出发,探讨其解决方案,以其更好的实现高并发. 不同的业务场景,读和写的频率各有侧重,有两种常见的业务场景: 读多写少:典型场景如广告检索端.白名单更新维护.loadbalancer 读少写多:典型场景如qps统计 本文针对读多写少(也称一写多读)场景…
概述 一谈到高并发的优化方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也能很大的影响整体性能,本文从单模块下读多写少的场景出发,探讨其解决方案,以其更好的实现高并发.不同的业务场景,读和写的频率各有侧重,有两种常见的业务场景: 读多写少:典型场景如广告检索端.白名单更新维护.loadbalancer 读少写多:典型场景如qps统计 本文针对读多写少(也称一写多读)场景下遇到的问题进行分析,并探讨一种合适的解…