2021.08.01 P4311 数字序列(左偏树) [P4331 BalticOI 2004]Sequence 数字序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.对于左偏树的应用 2.好好复习一下高中数学必修三 题意: 给定一个整数序列a_1, a_2, ··· , a_n,求出一个递增序列b_1 < b_2 < ··· < b_n,使得序列a_i和b_i的各项之差的绝对值之和|a_1 - b_1| + |a_2 - b_2| + ··· + |a…
题目传送门 数字序列 题目描述 给定一个整数序列 a1​,a2​,⋅⋅⋅,an​ ,求出一个递增序列 b1​<b2​<⋅⋅⋅<bn​ ,使得序列 ai​ 和 bi​ 的各项之差的绝对值之和 ∣a1​−b1​∣+∣a2​−b2​∣+⋅⋅⋅+∣an​−bn​∣ 最小. 输入输出格式 输入格式: 第一行为数字 n (1≤n≤10^6) ,接下来一行共有 n 个数字,表示序列 a_i (0≤a_i≤2×10^9) . 输出格式: 第一行输出最小的绝对值之和. 第二行输出序列 bi​ ,若有多种方…
正解:左偏树 解题报告: 传送门$QwQ$ 开始看到的时候$jio$得长得很像之前做的一个$dp$,,, 但是$dp$那题是说不严格这里是严格? 不难想到我们可以让$a_{i},b_{i}$同时减去$i$这样就变成那道题辣,,,?$QwQ$ 但是如果$dp$的话复杂度是$O(n^2)$的就假了$QwQ$ 这里介绍一个左偏树做法,复杂度是$O(nlogn)$的$QwQ$ 先考虑两个特殊情况,分别是$a$递减和$a$递增$QwQ$? 递增很显然就$b_{i}=a_{i}$就成$QwQ$ 然后如果是递…
清晰明了%%% Fairycastle的博客 个人习惯把size什么的存在左偏树结点内,这样在外面好写,在里面就是模板(只用修改update). 可以对比一下代码(好像也差不多-) MY CODE #include <vector> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MAXN = 1000005; struct lt…
2021.08.01 P3377 左偏树模板 P3377 [模板]左偏树(可并堆) - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) #include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define aa 100010 int n,m,vis[aa],fa[aa]; struct node{ int ls,rs,val,dis; }a[aa]; inl…
这道题哪里都找不到. [问题描述] 给定一个整数序列a1, a2, … , an,求一个不下降序列b1 ≤ b2 ≤ … ≤ bn,使得数列{ai}和{bi}的各项之差的绝对值之和 |a1 - b1| + |a2 - b2| + … + |an - bn| 最小. [数据规模] 1 ≤ n ≤ 106, 0 ≤ ai ≤ 2*109     这道题很有趣,值得一做.     我们对于这种题目,要有有效的思维方式.     ①:考虑最终的答案数列B,它能够看成是很多段相同的数段连接而成的,构成一个…
PS:参考了黄源河的论文<左偏树的特点及其应用> 题目描述:给定一个整数序列\(a_1, a_2, - , a_n\),求一个递增序列\(b_1 < b_2 < - < b_n\),使得序列\(a_i\)和\(b_i\)的各项之差的绝对值之和 \(|a_1 - b_1| + |a_2 - b_2| + - + |a_n - b_n|\) 最小. 不难发现两条性质: ①:若原序列a满足\(a_1 < a_2 < - < a_n\),显然最优情况为\(b_i=a…
2021.08.01 P4359 伪光滑数(二叉堆) [P4359 CQOI2016]伪光滑数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 若一个大于 11 的整数 MM 的质因数分解有 k 项,其最大的质因子为 a_k,并且满足 \[a_{k}^{k} ≤N,a_k < 128 \] ,我们就称整数 M 为 N - 伪光滑数. 现在给出 NN,求所有整数中,第 KK 大的 NN - 伪光滑数. 分析: 在k一定时,如果已知p_maxn,则val_maxn=k*p_…
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18.R=13 Source [分析] 这题主要是要证明结论.详见hyh的论文. 先说说结论做法: 把序列分成m个区间,每个区间最后到达的值都是u.u为这个区间所有数的中位数. 先做一个小小的转化,题目要求b1<b2<...b3…
[题目大意] 给定一个序列t1,t2,...,tn ,求一个递增序列z1<z2<...<zn , 使得R=|t1−z1|+|t2−z2|+...+|tn−zn| 的值最小.本题中,我们只需要求出这个最小的R值. [思路] -这个比加延迟标记的左偏树调试得还久……WA到死…… 如果ti是递增的,我们只需要取zi=ti: 如果ti是递减的,我们只需要取ti的中位数. 所以我们将ti分割成若干个区间,维护每个区间的中位数.对于[L,R]的区间,我们存放[L,(L+R)/2]在堆中.具体如下操作…