论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiangnan He, Xiang Wang, Yan Li, Kai Zheng, Yongdong Zhang论文来源:2019, NeurIPS论文地址:download 论文代码:download 1 Introduction GNNs 中的图卷积操作可以认为是对目标节点的邻居特征线性聚合(加权和)…
Paper Information Title:Cauchy Graph EmbeddingAuthors:Dijun Luo, C. Ding, F. Nie, Heng HuangSources:2011, ICMLOthers:71 Citations, 30 References Abstract 拉普拉斯嵌入( Laplacian embedding)为图的节点提供了一种低维表示,其中边权值表示节点对象之间的成对相似性.通常假设拉普拉斯嵌入结果保留了低维投影子空间上原始数据的局部拓扑结…
Paper Information Title:Variational Graph Auto-EncodersAuthors:Thomas Kipf, M. WellingSoures:2016, ArXivOthers:1214 Citations, 14 References 1 A latent variable model for graph-structured data VGAE 使用了一个 GCN encoder 和 一个简单的内积 decoder ,架构如下图所示: Defini…
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, Jie Tang论文来源:2022, KDD论文地址:download 论文代码:download 1 Introduction GAE 研究困难之处: 首先,过度强调结构信息. 大多数 GAEs 利用重建边连接作为目标…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
论文信息 论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data论文作者:Qi Zhu, Natalia Ponomareva, Jiawei Han, Bryan Perozzi论文来源:2021, NeurIPS论文地址:download 论文代码:download 1 Introduction 半监督学习通过使用数据之间的关系(即边连接关系,会产生归纳偏差),以及一组带标签的样本…
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein Khasahmadi论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 我们引入了 LG2AR,学习图增强来学习图表示,这是一个端到端自动图增强框架,帮助编码器学习节点和图级别上的泛化表示.LG2AR由一个学习增强参数上的分布的概率策…
论文信息 论文标题:Efficient Graph Convolution for Joint Node RepresentationLearning and Clustering论文作者:Chakib Fettal, Lazhar Labiod,Mohamed Nadif论文来源:2021, WSDM论文地址:download论文代码:download 1 Introduction 一个统一的框架中解决了节点嵌入和聚类问题. 2 Method 整体框架: 2.1 Joint Graph Rep…
论文信息 论文标题:Attributed Graph Clustering via Adaptive Graph Convolution论文作者:Xiaotong Zhang, Han Liu, Qimai Li, Xiao-Ming Wu论文来源:2019, IJCAI论文地址:download 论文代码:download 1 Introduction 关于GNN 是低通滤波器的好文. 2 Method 2.1 Graph Convolution 2.1.1 Basic idea 为正式定义图…
论文标题:DEEP GRAPH INFOMAX 论文方向:图像领域 论文来源:2019 ICLR 论文链接:https://arxiv.org/abs/1809.10341 论文代码:https://github.com/PetarV-/DGI 摘要 DGI,一种以无监督的方式学习图结构数据中节点表示的一般方法.DGI 依赖于最大限度地扩大图增强表示和目前提取到的图信息之间的互信息--两者都是使用已建立的图卷积网络体系结构导出的.对于图增强表示,是根据目标节点所生成的子图,因此可以用于下游节点的…