ABC 171 F - Strivore 【容斥】】的更多相关文章

2015 asia xian regional F Color (容斥 + 组合数学) 题目链接http://codeforces.com/gym/100548/attachments Description Recently, Mr. Bigrecieved n flowers from his fans. He wants to recolor those flowerswith m colors. The flowers are put in a line. It is not allow…
题目 F : Four-tuples  输入 1 1 1 2 2 3 3 4 4 输出 1 题意 给l1, r1, l2, r2, l3, r3,  l4, r4​ , 八个数据, 要求输出在区间[l1, r1] ,  [l2, r2] , [l3, r3] ,  [l4, r4​] (记为A, B, C, D)范围内, 各取一个数(取作x1, x2, x3, x4), 并且x1 != x2, x2 != x3, x3 != x4, x4 != x1, 注意像x1 == x3是可以的 思路 容斥…
点此看题面 大致题意: 让你求出在区间\([L,H]\)间选择\(n\)个数时,有多少种方案使其\(gcd\)为\(K\). 容斥 原以为是一道可怕的莫比乌斯反演题. 但是,数据范围中有这样一句话:\(H-L\le10^5\). 于是,它就变成了一道可以用容斥乱搞的题目. 大致思路 首先,我们将\(L\)与\(H\)分别除以\(K\)(注意\(L\)向上取整,\(H\)向下取整,这应该还是比较好理解的). 然后我们在\([1,H-L]\)之间枚举\(i\),假设\(x\)表示\([L,H]\)区…
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gcdk2−gcdk1=gcd(k2−k1)>d 所以特判一下全相等的情况就行利润 然后把区间除以k,这样问题就转成了找gcd==1,设f[i]为gcd为i的方案数.从大到小枚举约数,快速幂计算选取选取情况,然后减去约束的倍数的f(容斥) #include<iostream> #include&…
LINK:path pass i 原本想了一个点分治 yy了半天 发现重复的部分还是很难减掉 况且统计答案的时候有点ex. (点了别人的提交记录 发现dfs就过了 于是yy了一个容斥 发现可以直接减掉不合法方案. 对于某个点的总方案 :\(1+\frac{n\cdot (n-1)}{2}\) 考虑不合法方案 可以发现在树上 我们按顺序便利树 不合法的情况只有两个颜色相同的点之间的那部分的点对不合法. 以及 最后靠上的那部分点的点对是不合法的. 所以 我们统计这些不合法点对的方案即可. 值得注意的…
Problem F: 我是好人4 Description 众所周知,我是好人!所以不会出太难的题,题意很简单 给你n个数,问你1000000000(含1e9)以内有多少个正整数不是这n个数任意一个的倍数 最后友情提供解题代码(我真是太好人了) void solve(int p[], int n) { int ans = 0; for (int i = 1; i <= 1e9; i++) { int fl = 0; for (int j = 0; j < n; j++) { if (i % p[…
题目链接:https://codeforces.com/contest/1245/problem/F 题意:给定一个区间(L,R),a.b两个数都是属于区间内的数,求满足 a + b = a ^ b 的实数对个数. 题解:看到求区间内满足一定条件的数的个数,应该用数位dp,数位dp基本操作是编写出solve函数调用记忆化搜索,那么考虑solve(R,R)是求0到R满足条件的答案,solve(L-1,R)求a属于0到L-1,b属于0到R满足条件的答案,solve(L-1,L-1)是ab都属于0到L…
LINK:Dark Horse 首先考虑1所在位置. 假设1所在位置在1号点 对于此时剩下的其他点的方案来说. 把1移到另外一个点 对于刚才的所有方案来说 相对位置不变是另外的方案. 可以得到 1在任何位置剩下的方案数都相同 所以不妨设1所在点为1 求出方案乘以n. 考虑怎么求方案 即求出剩下的n-1个区间 且每个区间的最小值都不能是给出的m的值. 直接做需要状压 做不了. 考虑容斥 容易想到答案为\(\sum_{s}(-1)^{|s|}f_s\) 其中\(f_s\)表示集合s一定不合法的方案数…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所有被至少踩过一次的石子的序号之和. 题解:根据裴蜀定理每个青蛙可以跳到的最小石子编号为 gcd(xi,m) = bi,所有小于 m 的 bi 的倍数都是可以到达的石头.显然所有 bi 都为 m 的因子,标记 m 中所有能到达的因子,进行容斥,比如因子2.3.6都可以到达,计算 2 和 3 的倍数的时…
Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明] 假设原集合为{A,B,C} 则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC} […