运筹学之线性规划 1.X】的更多相关文章

MIS 管理信息系统(Management Information System,简称MIS) 是一个以人为主导,利用计算机硬件.软件.网络通信设备以及其他办公设备,进行信息的收集.传输.加工.储存.更新和维护,以企业战略竞优.提高效益和效率为目的,支持企业的高层决策.中层控制.基层运作的集成化的人机系统.管理信息系统由决策支持系统(DSS).工业控制系统(CCS).办公自动化系统(OA)以及数据库.模型库.方法库.知识库和与上级机关及外界交换信息的接口组成. 基本信息 组成部分: EDPS,分…
1.线性规划模型: 2.使用python scipy.optimize linprog求解模型最优解: 在这里我们用到scipy中的linprog进行求解,linprog的用法见https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=Non…
<运筹学上机实验指导>分为两个部分,第一部分12学时,是与运筹学理论课上机同步配套的4个实验(线性规划.灵敏度分析.运输问题与指派问题.最短路问题和背包问题)的Excel.LONGO和LINDO求解方法和3个大综合作业,并配有解答和操作的视频:第二部分16学时,介绍LINGO求解运筹学中线性.整数等问题,主要侧重介绍解决大规模的运筹学问题,包含10个实验和1个综合大实验,并附有求解过程.答案及相应的视频,且答案经过上课检验全部正确.建议在上完“运筹学”的理论课和基本了解Excel.LONGO和…
很久没更新过APS系列文章了,这段时间项目工作确实非常紧,所以只能抽点时间学习一下运筹学的入门知识,算是为以后的APS项目积累点基础.看了一些运筹学的书(都是科普级别的)发现原来我目前面对的很多排产.排班.资源分配和路线规划问题,都是运筹学上的典型案例.与此同时,除了继续使用Optaplanner来做我们的规划类项目外,还花点时间去研究了一下Google OR-Tools开源规划引擎,这是Google旗下的一个开源求解器,接下来我会专门写一些关于Google OR-Tools应用的文章,并与Op…
无缘诺贝尔奖的George Dantzig——线性规划之父 王军强,2012年11月2日 “线性规划之父”的George Dantzig,与“计算机之父”.“博弈论之父”John Von Neumann(约翰•冯•诺依曼)以及线性规划对偶理论提出者Leonid Kantorovich被誉为数学规划的三大创始人,为运筹学创立与发展立下赫赫功劳.在Leonid Kantorovich 因解决稀缺资源的最优配置获1975年诺贝尔经济学奖的时候,大家愕然George Dantzig为什么没有得到诺贝尔经…
目录 相关知识点 LP线性规划问题 MIP混合整数规划 MIP的Python实现(Ortool库) assert MIP的Python实现(docplex库) 相关知识点 LP线性规划问题 Linear Problem [百度百科]:研究线性约束条件下线性目标函数的极值问题的数学理论和方法. 学过运筹学的小伙伴,可以看这个LP问题的标准型来回顾一下: 不太熟悉的朋友可以看这个例题,再结合上面的标准型,来感受一下: MIP混合整数规划 Mixed Integar Planing 混合整数规划是LP…
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None) 今天阅读数据建模第一章线性规划问题,问题描述如下: 通过介绍我们知道了线性规划,就是目标函数及约束条件均为线性函数. 通过画图我们可知,X1,X2的最优解为2,6,目标值为26. 我们如何时候这个scipy的公式来计算这个值呢:…
model:max=13*A+ 23*B; 5*A + 15*B <480 ; 4*A + 4 *B <160 ; 35* A + 20 *B <1190 ; end Variable Value Reduced Cost A 12.00000 0.000000 B 28.00000 0.000000 Row Slack or Surplus Dual Price 1 800.0000 1.000000 2 0.000000 1.000000 3 0.000000 2.000000 4…
Lagrange 对偶问题 定义其的对偶问题: Lagrange函数 考虑线性规划问题 若取集合约束D={x|x≥0},则该线性规划问题的Lagrange函数为 线性规划的对偶问题为: 对偶定理原问题: 对偶问题: 定理1(弱对偶定理) LP对偶问题的基本性质原问题(P) 对偶问题(D) 定理1(弱对偶定理) 定理2(最优性准则) 证明: 定理3(强对偶定理)若(P),(D)均有可行解,则(P),(D)均有最优解,且(P),(D)的最优目标函数值相等.证明:因为(P),(D)均有可行解,由推论2…
在管理信息系统的开发过程中,往往会涉及到一些线性规划数学模型,例如资源配置优化.微软的Microsoft.Solver.Foundation是一个数学库,可以很好的对线性规划问题进行求解.关于它的细节,可以自行百度,话不多说,以例题来学习如何用Microsoft.Solver.Foundation进行线性规划: 题目(来自网络),如下图: 为了解决上述线性规划问题,先要下载并安装Microsoft.Solver.Foundation库,关于安装细节这里不赘述. 1.VS2012建立一个WPF应用…